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EXECUTIVE SUMMARY 

Increasingly, researchers and practitioners are developing composite indices to provide 

multidimensional, integrated assessments and synthetic measures of climate change vulnerability and 

resilience. The creators of these indices design them to capture complex social-ecological systems at 

multiple spatial scales, ranging from national to local levels, and to support comparative analysis of 

climate exposure units within particular geographic areas and socioeconomic sectors. Composite indices 

can provide relative measures (or scores) that allow the ranking of cases from lowest to highest level of 

climate vulnerability or resilience. 

This paper presents an overview of existing approaches to the design, use, and improvement of 

composite indices, with emphasis on their application in a range of efforts to better understand climate 

change impacts, vulnerabilities, adaptation, and resilience at different spatial and temporal scales. The 

goal of this paper is to provide readers with an introductory overview of composite index design and 

use for climate change vulnerability and resilience assessments at subnational scales, as well as guidance 

on the essential steps needed to construct and refine a composite index. Readers interested in learning 

more about how to construct climate change vulnerability and resilience indices can use this document, 
and the body of literature it cites, as a starting point. 

Section 1 introduces the paper with background on why an understanding of indicator and composite 

index design and use may be of interest to professionals involved in climate change adaptation efforts. 

Section 2 identifies the advantages, disadvantages, and limitations of using composite indices. To provide 

a general framework and a set of criteria and guidelines for evaluating existing composite indices, Section 

3 describes key theoretical and methodological considerations and commonalities by explaining 11 

essential stages and the range of decisions involved in composite index design. Section 3 also includes an 

overview table to facilitate comparison of six selected composite indices according to these 11 steps. 

The indices were selected because they represent recent efforts at subnational levels to develop indices 

on climate-sensitive systems or sectors, such as water, agriculture, food, livelihoods, human health, river 

basins, urban areas, and coastal regions. An additional criterion for inclusion in this paper was some 

degree of implementation in African, Latin American, and/or Caribbean contexts. Summaries of the six 

selected composite indices are presented in an Annex. Section 4 discusses current best practices and 
key challenges. Section 5 offers concluding remarks and summarizes recommendations. 

The paper concludes that a substantial body of work and expertise currently exists to provide valuable 

guidance on the necessary stages of composite index design and use for the purpose of climate change 

vulnerability and resilience assessment at subnational scales. Most of the indexing efforts for this purpose 

are recent, having emerged within the past decade. Few have been thoroughly verified and validated or 

undergone multiple iterations toward refinement. Nevertheless, they provide a substantive basis for 
defining best practices, recognizing limitations, and identifying remaining challenges.  

Composite indices should be viewed as analytical, communication, and collaborative tools that have 

potential to support climate-related decision making, planning, policy development, and management 

systems by promoting discussions about climate change vulnerability and resilience and by facilitating 

scenario analysis to examine possible futures. Experts and stakeholders should be involved early in the 

composite index design process to inform the theoretical and conceptual framework used to define 

climate change vulnerability and resilience as well as to inform the structural design of the index, 

indicator selections, weighting schemes, aggregation methods, and the selection of visualization options 
for displaying results.
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1.0 INTRODUCTION  

Composite index methodologies have evolved to meet a wide range of purposes and to inform 

particular decisions or decision-making processes. Examples include assessments of human development, 

wellbeing, quality of life, sustainability, governance quality, gender inequality, poverty, multiple 

deprivation, food security, energy security, disaster risk, and disaster risk management.1 In recent years, 

composite indexing efforts have begun to develop synthetic measures of relative vulnerability and 

resilience to climate variability and climate change at a range of spatial scales.2 Notably, the U.S. Global 

Change Research Program has been coordinating activities to develop a system of physical, ecological, 

and societal indicators and indices to measure, monitor, and manage conditions at national and 

subnational spatial scales in support of ongoing U.S. National Climate Assessment efforts (Janetos et al., 

2012; Kenney et al., 2012). Composite indices can be applied to analyze and compare units of analysis 

within particular geographic areas or socioeconomic sectors. They can provide relative measures (or 

scores) that allow the ranking of cases from lowest to highest level of climate vulnerability or resilience. 

DEFINITION OF KEY TERMS 

An indicator is a direct measure, an indirect measure (proxy indicator), or a calculation used to 

represent an attribute of a system of interest (e.g., a population, geographic region, socioeconomic 

sector, or coupled human-environment system). Indicator values are derived from processed data. An 

indicator can be a quantitative or a qualitative measure. For example, maternal mortality ratio, infant 

mortality rate, and life expectancy at birth can serve as proxy indicators to indirectly measure and 
monitor a population’s access to essential health care services. 

A composite index aggregates multiple individual indicators to provide a synthetic measure (a 

summary statistic) of a complex, multidimensional, and meaningful societal issue (e.g., poverty, degree 

of human development, level of sustainability, or capacity for disaster risk management). Individual 

indicators and indicator sets can be selected, arranged, and combined to produce subindices 

representing the main components or dimensions of the system under investigation. An education 

subindex might include indicators such as literacy rate, primary school enrollment, and educational 

attainment. A set of subindices can then be further aggregated into a final composite index. The 

Human Development Index (HDI), for example, organizes indicators into three main dimensions of 

human wellbeing: health, education, and income.3 

                                                

1 See, for example, Andrews (1989), Booysen (2002), Cendrero et al. (2003), Molle and Mollinga (2003), Parris and Kates 

(2003), Birkmann (2007), Carreño et al. (2007), Van de Kerk and Manuel (2008a), Schmidt and Dorosh (2009), Kaufmann 

and Kraay (2007), Kaufmann et al. (2010), Noble et al. (2010), Razafindrakoto and Roubaud (2010), Cardona and Carreño 

(2011), Sovacool and Mukherjee (2011), Collomb et al. (2012), Magee et al. (2012), Nussbaumer et al. (2012), Emerson et 

al. (2012), Ravallion (2012), O’Hare and Gutierrez (2012), van Staveren (2012), and de Sherbinin et al. (2013). 

2 See, for example, Vincent (2004), Sullivan and Meigh (2005), Eakin and Bojórquez-Tapia (2008), Balica et al. (2009), 

Confalonieri et al. (2009), Füssel (2009), Gbetibouo and Ringler (2009), Hahn et al. (2009), Jean-Baptiste et al. (2011), 

Sullivan (2011), Abson et al. (2012), Balica (2012b), Balica et al. (2012), Tate (2012), Torres et al. (2012), and Confalonieri et 

al. (2013). 

3 For more information about the HDI, see Lawrence et al. (2002), Molle and Mollinga (2003), Chowdhury and Squire (2006), 

Heidecke (2006), Stapleton and Garrod (2007), Klugman et al. (2011), Nguefack-Tsague et al. (2011), Wolff et al. (2011), 

Torres et al. (2012), and Tofallis (2013). 
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An indicator can represent a single variable or a combination of variables. Throughout this paper, 

indicators representing single variables are referred to as individual indicators, while measures 

representing the integration of multiple individual indicators are referred to as composite indices. Once 

baseline conditions (i.e., existing conditions, which serve as a foundation for analysis) are benchmarked, an 

individual indicator or a composite index can be evaluated over time at regular intervals to monitor 

changes in system status or to track trends in system performance (Organisation for Economic Co-
operation and Development [OECD], 2008; Balica, 2012b). 

A composite index for climate change vulnerability and resilience assessment may serve a variety of 

purposes and functions. Composite indices aim to capture complex realities and multidimensional 

concepts that cannot be adequately represented by an individual indicator or by an unstructured, 

disaggregated set of individual indicators such as indicator sets presented using a basket of indicators or 

a dashboard approach (Kenney et al., 2012). Ideally, the process of designing and implementing a 

composite index is reflexive and serves to: raise awareness; promote debate and dialogue; and improve 

understanding and communication of the complex, multidimensional issue. Process-oriented composite 
indexing should help build consensus among stakeholders and support decision-making. 

Given these multiple purposes and functions, composite index approaches may be well-suited to: 

 help assess and track vulnerability and resilience to climate variability and change at national and 
subnational scales; 

 analyze and compare units of analysis in particular geographic areas or socioeconomic sectors;  

 estimate expected or possible future climate vulnerability and resilience for comparison with 

assessments of past and current conditions by adjusting input values according to future climate and 

socioeconomic scenarios and projections; and 

 help guide policy decisions, set priorities, target resources, and manage progress toward climate 
change adaptation and resilience. 

Composite indices are one method of conducting spatial vulnerability assessments, as discussed in the 

USAID African and Latin American Resilience to Climate Change (ARCC) Project working paper on 

“Spatial Climate Change Vulnerability Assessments: A Review of Data, Methods, and Issues” (de 

Sherbinin, 2013). Readers may also wish to refer to the ARCC report “Mali Climate Vulnerability 

Mapping” for an example of climate vulnerability index development and mapping (de Sherbinin et al., 
2014). 

Later in this paper, we make recommendations for the development of composite indices. In summary, 

several important issues need to be considered and some common challenges need to be addressed. 

The reasons, assumptions, and underlying decision-making processes behind all methodological choices 

should be made clear. Developers of climate vulnerability and resilience indices should strive to 

articulate coherent and compelling theoretical and conceptual frameworks and to select the most 

appropriate and credible indicators to represent key aspects of interconnected physical, social, 

demographic, economic, political, institutional, environmental, ecological, and resource systems. From 

the outset of this process, index developers should explicitly identify and communicate overarching 

values and principles, underlying assumptions and theories, frameworks of analysis, intended goals and 

audiences, available data sources, and data limitations. They must also make methodological choices 

about how to organize, standardize, weigh, and aggregate the selected indicators to build index 

components (subindices) and to arrive at the final index results. Uncertainty analysis and sensitivity 

analysis, essential to index development and indicator selection, are used to assess and compare the 
robustness of alternative index designs and rankings. 
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Section 2 identifies the advantages, disadvantages, and limitations of using composite indices. Section 3 

describes key theoretical and methodological considerations and commonalities by explaining 11 

essential steps and decisions involved in composite index design and development. This section provides 

a general framework and set of criteria to help guide evaluations of specific composite indices. Section 3 

includes an overview table to facilitate comparison of six selected composite indices according to these 

11 steps. These six examples have been designed and implemented within the past decade to assess 

relative vulnerability to climate variability and change at subnational levels. These indices were selected 

because they represent recent efforts at subnational levels to develop indices on climate-sensitive 

systems or sectors, such as water, agriculture, food, livelihoods, human health, river basins, urban areas, 

and coastal regions. An additional criterion for inclusion was some degree of implementation in African, 

Latin American, and/or Caribbean contexts. Summaries of the six selected composite indices are 

presented in an Annex to illustrate the 11 essential stages and evaluation criteria. Section 4 discusses 

current best practices and key challenges. Section 5 offers concluding remarks and summarizes 
recommendations. 
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2.0 COMPOSITE INDICES: 

ADVANTAGES, 

DISADVANTAGES, AND 

LIMITATIONS 

The power of the composite index approach is in its ability to portray the results of an integrated 

analytical framework. While individual indicators can be informative, a well-designed and rigorously 

implemented composite index has the potential to capture “the bigger picture,” i.e., the 

multidimensionality of complex systems, and to provide summary statistics that communicate system 

status and trends to a variety of relevant audiences (Booysen, 2002; Hahn, 2008; Zhou and Ang, 2009; 

Balica, 2012b; Ravallion, 2012). Therefore, a potential advantage of designing a composite index to 

analyze multidimensional complex systems is its understandability when results are presented as scores 

or rankings that key stakeholders, decision makers, and the general public can easily comprehend 
(Kenney et al., 2012). 

In addition to benchmarking baseline conditions and tracking performance over time, composite indices 

offer flexibility as tools that can be shaped to meet the needs of decision makers and stakeholders 

(Booysen, 2002). Composite index designs can and should be adjusted and refined over time. As 

improved or new data sets become available, they can be used to substitute previously used data sets or 

added to the index. Thus, the process of composite index design often helps guide future research, data 

collection, and data improvement efforts by revealing weaknesses and gaps in knowledge domains and 
data systems.4  

By improving understanding of social-ecological conditions and trends, climate vulnerability and 

resilience indices can help societies to identify priorities, establish and refine standards, develop policy 

guidelines, determine appropriate adaptations, set targets, and allocate resources for vulnerability 

reduction and resilience enhancement. To meet these goals, composite indices should be developed 

through participatory processes that encourage input and feedback from experts and/or that 

incorporate public opinion. By serving as a point of entry or a “boundary object,” a composite index can 

help promote multi-stakeholder dialogue toward establishing common understanding and overcoming 

sociopolitical barriers to decision making (Preston et al., 2011: 183). In other words, if designed and 

used in ways that foster multi-stakeholder participation and convene experts, practitioners, 

policymakers, and citizens, composite indices have the potential to promote collaborative formulation of 

coordinated development and climate change adaptation strategies, help build consensus, and inform 

collective action. The range of stakeholders who should be involved in the composite index 
development process will depend on the goals of the particular effort. 

                                                

4 It is worth noting that there is a trade-off between improving indices with new data and continued development of 

comparable indicators over time. Index creators need to determine which goal is more important: to reflect the latest 

science or to ensure comparability with past analyses. 
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It is important to be aware that the aggregation of individual indicators into a composite index to 

produce a summary statistic results in a loss of specificity and may mask important information about 

individual indicators (Molle and Mollinga, 2003; Abson et al., 2012; Kenney et al., 2012). Composite 

indices may fail to capture the interconnectedness of indicators, ignore important dimensions that are 

difficult to measure, and disguise weaknesses in some components (Molle and Mollinga, 2003; Zhou and 

Ang, 2009; Abson et al., 2012). 

Maggino and Zumbo (2012) argue that a potential advantage of developing composite indices is that they 

can help to overcome problems concerning precision, reliability, accuracy, and validity that are 

associated with using individual indicators, i.e., a variable that is not directly observable through an 

individual indicator may require integration of multiple indicators, each corresponding to a particular 

aspect of the variable. Kaufmann and Kraay (2007) assert that indicator aggregation has the potential to 

reduce the influence of measurement error associated with any individual indicator. On the other hand, 

others warn that indicator aggregation tends to amplify the influence of measurement error and that the 

problems referenced above that are associated with individual indicators are propagated in the process 
of aggregation into a composite index (M. Gall, personal communication, August 20, 2013). 

It is not necessary to model the entire system of interest to effectively measure its climate vulnerability 

or resilience. It may be possible to identify a parsimonious set of indicators to construct an effective and 

efficient measure (M. Gall, personal communication, August 20, 2013). In a recent evaluation of several 

social vulnerability indices, Gall (2007) found that, in most cases, the index developers over-specified 

their indices without increasing accuracy. Barnett et al. (2008: 107) argue that indices “should utilize 

fewer indicators based on widely available and robust data.” However, others argue that 

oversimplification of a complex system risks omission of significant components and inaccurate 

representation of the intended condition or process (Vincent, 2007). This topic is taken up in greater 
detail in Section 3.4. 

Index-based analyses and comparisons of climate change vulnerability and resilience can be more 

challenging when local geographic, ecological, and socioeconomic contexts vary widely within a given 

area of interest. For example, it may be more challenging to analyze countries possessing both coastal 

and inland districts than landlocked countries at subnational levels if the same set of indicators is not 
appropriate for different ecological zones within a country. 

Given these and other related concerns, composite indices have the potential to misguide policy and 

practice if used in an indiscriminating manner or if results are misinterpreted, misrepresented, or 
overstated. Therefore, care and vigilance should be exercised to avoid such risks 
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3.0 STEPS AND DECISIONS IN 

THE COMPOSITE INDEX 

DESIGN AND DEVELOPMENT 

PROCESS 

The quality of a composite indicator, as well as the soundness of the messages it conveys, depend not 

only on the methodology used in its construction but primarily on the quality of the framework and the 

data used. A composite based on a weak theoretical background or on soft data containing large 

measurement errors can lead to disputable policy messages, in spite of the use of state-of-the-art 

methodology in its construction…Whichever framework is used, transparency must be the guiding 
principle of the entire exercise. (OECD, 2008: 17) 

Far too often…indicators are developed and used without consideration of the conceptual definition of 

the phenomenon and a logical cohesion of the conceptual definition and the analytic tools and strategies. 

In our experiences, the lack of any logical cohesion is often masked by the use and application of 

sophisticated procedures and methods that can deform reality producing distorted results. (Maggino and 
Zumbo, 2012: 202, 205) 

The methodological choices made during various stages of composite index construction involve 

assumptions, subjectivity, and uncertainties that should be recognized, addressed, and communicated 

throughout the analytic process (Eriksen and Kelly, 2007; OECD, 2008; Balica and Wright, 2010; 

Sullivan, 2011; Balica, 2012b; Permanyer, 2012; Tate, 2012, 2013). While the steps outlined below are 

presented in a logical procedural sequence, in practice, several of these stages are likely to take place 

concurrently as participants collaborate to develop, adjust, and refine the evolving index;  each stage 
should be revisited after the initial version of the index is created (Booysen, 2002). 

The following guidelines, i.e., key steps and best practices drawn from the literature on composite 

indices, provide benchmarks against which to qualitatively evaluate the six examples — presented in 

Table 1 and the Annex — of existing indices focused on climate-sensitive systems or sectors. Table 1 in 

the following pages facilitates an at-a-glance comparison of the six examples, while the summaries 

presented in the Annex provide a more detailed examination. For example, a quick review of Table 1 

shows that both the Flood Vulnerability Index (FVI) and the Coastal City Flood Vulnerability Index 

(CCFVI) integrate indicators of exposure (E), susceptibility (S), and resilience (R) to calculate 

vulnerability (V = E + S – R) and that, while the FVI is structured into four major components (social, 

economic, environmental, and physical), the CCFVI is structured into three major components (hydro-

geological, socioeconomic, and political-administrative). The FVI and CCFVI summary in the Annex 

provides the reader with the specific indicators selected for each of the four major components of the 

FVI and at which geographic scale (see Figure 2 in the Annex). For instance, in the social component, five 

resilience indicators are applied at the river basin scale, sub-catchment scale, and urban area scale: 1) 
warning system, 2) evacuation routes, 3) institutional capacity, 4) emergency service, and 5) shelters. 
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TABLE 1. OVERVIEW OF SIX COMPOSITE INDICES DESIGNED TO ASSESS RELATIVE VULNERABILITY TO CLIMATE 

CHANGE AT SUBNATIONAL LEVELS 

 
Climate Vulnerability 

Index (CVI) 

Flood Vulnerability 
Index (FVI) and 

Coastal City Flood 
Vulnerability Index 

(CCFVI) 

Livelihood 

Vulnerability Index 
(LVI) and LVI-IPCC 

Socio-Climatic 

Vulnerability Index 
(SCVI) 

Water Poverty Index 
(WPI) 

Water Vulnerability 
Index (WVI) 

Purpose and 
Theoretical/ 
Conceptual 

Framework 

Assessment of relative 
vulnerability to existing 

climate variability within 
a region or zone. 

Focuses on water-related 

issues. 

Combines social, 
economic, 
environmental, and 

physical factors. Builds on 
the WPI (Connor and 
Hiroki, 2005; Sullivan, 

2011). 

Flood vulnerability 
assessment for flood risk 

management. Initially 
developed to assess 
vulnerability to river 

flooding. Extended to 
assess vulnerability to 
coastal flooding. Intended 

to serve as a tool for 
policy and decision 
makers. 

The FVI and CCFVI 
integrate indicators of 

exposure (E), susceptibility 
(S), and resilience (R) 
based on the general 
vulnerability (V) concept: 

V = E + S – R 

Assessment of household 
livelihood vulnerability to 

climate variability and 
change. Builds on the 
sustainable livelihoods 

approach (Chambers and 
Conway, 1992) to identify 
the household 

characteristics that 
contribute most to climate 
vulnerability. 

Assessment of social 
vulnerability to climate 

change. 

Torres et al. (2012) do not 

explicitly define the 

conceptual framework, but 
it appears to combine the 

risk-hazard and social 
vulnerability approaches. 

Assessment of water 
stress and water scarcity. 

Although the WPI did not 
initially focus on climate 
change, it provided a basis 

for the development of 
both the CVI and the WVI 
(Sullivan, 2011; Balica, 

2012b). 

The WPI applies a basic 

needs approach and is 
based on the premise that 
access to adequate and 

sustained supplies of safe 
water and adequate 
sanitation are essential for 
social and economic 

development and the 
reduction of poverty, 

hunger, and disease. 

Assessment of water 
sector vulnerability to 

climate change. 
Comparison of water 
vulnerability profiles and 

identification of main 
drivers at the municipal 
scale. Tool to support 

water governance, water 
management across 
heterogeneous basins, and 

local efforts toward 
integrated water resources 
management. Builds on the 

WPI (Sullivan, 2011). 

Geographic 

Scope/ 
Regions and 

Scales 

Covered in 
Existing 
Studies 

Focuses on West Africa 
at the national level. 

Focuses on Peru at the 
department and district 

levels. 

FVI: Focuses on river basin 
scale (Danube, Mekong, 

Rhine); sub-catchment 
scale (Tisza, Timis, and 
Bega in Danube; Mun in 

Mekong; Neckar in Rhine); 
urban scale (Timisoara 
City, Romania; Phnom 
Penh City, Cambodia; 

Mannheim City, Germany). 

CCFVI: Focuses on 

Buenos Aires (Argentina), 
Calcutta (India), 

Casablanca (Morocco), 

Dhaka (Bangladesh), Manila 
(Philippines), Marseille 
(France), Osaka (Japan), 

Shanghai (China), and 
Rotterdam (the 
Netherlands). 

Focuses on Moma and 
Mabote districts in 

Mozambique. 

Focuses on Brazil at a 
spatial resolution of 1° x 

1° latitude/ 
longitude grid. 

Focuses on the national 
scale for 140 countries 

(Lawrence et al., 2002). 

Focuses on various 

subnational scales in South 
Africa (Sullivan et al., 2003; 
Cullis and O'Regan, 2004), 
Tanzania (Sullivan et al., 

2003), Benin (Heidecke, 
2006), Kenya (Giné 
Garriga and Pérez Foguet, 

2010), Mexico (Fenwick, 
2010), and Peru (Pérez 

Foguet and Giné Garriga, 

2011). 

Developed as an 
integrative tool for basin- 

and local-level water 
managers and decision 
makers to consider site-

specific drivers and 
adaptation options; applied 
to compare 87 South 
African municipalities 

within the Orange River 
Basin (Sullivan, 2011). 
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Climate Vulnerability 

Index (CVI) 

Flood Vulnerability 
Index (FVI) and 

Coastal City Flood 
Vulnerability Index 

(CCFVI) 

Livelihood 
Vulnerability Index 
(LVI) and LVI-IPCC 

Socio-Climatic 
Vulnerability Index 

(SCVI) 

Water Poverty Index 

(WPI) 

Water Vulnerability 

Index (WVI) 

Applicable 
Spatial Scales 

of Analysis 

Applicable at multiple 
spatial scales. Spatially 
nested application 
recommended. 

Applicable at multiple and 
nested spatial scales 

FVI: river basin, sub-
catchment, urban area 

CCFVI: urban area 

Applicable at district and 
community levels 

Applicable at multiple and 
nested spatial scales. 

Applicable at multiple and 
nested spatial scales. 

Applicable at multiple and 
nested spatial scales. 

Structural 
Design/Major 

Components 

Six major components: 

1) Resources 

2) Access 
3) Capacity 

4) Use 
5) Environment 
6) Geospatial 

Four major components of 
the FVI: 

1) Social 
2) Economic 

3) Environmental 
4) Physical 

Three major components 
of the CCFVI: 

1) Hydro-geological 
2) Socioeconomic 
3) Political-administrative 

Seven major components 
of the LVI: 

1) Socio-demographic 
profile 

2) Livelihood strategies 
3) Health 
4) Social networks 

5) Food 
6) Water 
7) Natural disasters and 

climate variability 

Three major components 
of the LVI-IPCC: 

1) Exposure 
2) Sensitivity 

3) Adaptive capacity 

Two major components: 

1) A climate change index 

such as the Regional 
Climate Change Index 

(RCCI), which 
synthesizes over 100 
climate model 

projections; and  

2) A social vulnerability 
index, e.g., combining 

demographic density 
(inhabitants/km2) and 
HDI scores. 

Five major components: 

1) Resources 

2) Access 
3) Capacity 

4) Use 
5) Environment 

Two major components: 

1) Supply-driven 

vulnerability of water 
systems (four 

subcomponents; eight 
individual indicators) 

2) Demand-driven 
vulnerability of water 
users (four 
subcomponents; eight 

individual indicators) 

Indicator 
Selection 
Criteria/ 

Approach 

 Data availability 

 Practicality 

 Locally relevant 

 Deductive approach 

used to identify the 
best possible 
indicators 

 Data availability 

 Data accuracy 

 Reliability of data 

sources 

 Ease of quantification 

 Avoidance of 

redundancy 

 Expert opinion 

 Extensive literature 

review on variables 
that affect exposure, 
sensitivity, and 

adaptive capacity to 
climate change 

 Practicality of data 
collection by means of 
household surveys 

 Data availability 

 Indicators obtained 
from existing data 
sources only 

 Spatial coverage 

 Comparability of data 
sets 

 Strengths and 
weaknesses of each 
indicator 

 HDI salience and 
resonance with 
policymakers 

 Data availability 

 Practicality 

 Indicators obtained 
from existing data 

sources only 
 

 Consultation of 

previous qualitative 
research investigating 
local perceptions of 

water vulnerability 

 Qualitative information 
from interviews and 

workshops 

 Data availability 

 Expert opinion 

Data Sources 
and Data 
Quality 

Best and most recent 
available data at the 

appropriate spatial and 
temporal resolutions. If 
data gaps are identified, 

either use proxy data or 
gather new data. 

Data sources vary 
according to spatial scale 

of analysis. May include 
government agencies (e.g., 
national statistical 

agencies), research 
institutes, and universities. 

Primary data gathered 
using household surveys 

designed with a clearly 
framed theoretical, 
conceptual, and analytical 

approach. 

Existing climate model 
projections (synthesized to 

calculate a climate change 
index); demographic 
census data; HDI. 

Data sources vary 
according to spatial scale 

of analysis. May include 
government agencies (e.g., 
national statistical 

agencies), research 
institutes, and universities. 

National statistical agency 
(Statistics South Africa; 

www.statssa.gov.za) 
databases and national 
hydrologic and 

meteorologic data from 
other relevant sources. 
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Climate Vulnerability 

Index (CVI) 

Flood Vulnerability 
Index (FVI) and 

Coastal City Flood 
Vulnerability Index 

(CCFVI) 

Livelihood 
Vulnerability Index 
(LVI) and LVI-IPCC 

Socio-Climatic 
Vulnerability Index 

(SCVI) 

Water Poverty Index 

(WPI) 

Water Vulnerability 

Index (WVI) 

Census data, population 
growth rates, land cover 
data, catchment 
boundaries, water 

management areas, local 
municipality boundaries, 
soil erodibility index 

(sediment yield), water 

demand for agriculture, 
domestic use, mining and 

industry, transfers, and 
power generation. Data 
for South Africa is well-

organized, available from a 
variety of sources, and 
relatively uniform in quality 

(Sullivan, 2011: 630). 

Data Trans-

formation 

Not addressed by 
Sullivan and Meigh 

(2005). 

Dimensionless FVI 
equations developed by 

using fractions with 
indicators as part of a 
numerator or 

denominator, depending 
on their effect on flood 
vulnerability. Use of “per 

capita” or “per property” 
values to eliminate the 
influence of the basin’s 

scale. 

An equation previously 
used in the HDI 

methodology to calculate 
the life expectancy index 
was adapted to normalize 

LVI subcomponents 
measured on different 
scales. 

Raster data normalized to 
a 1° resolution grid. 

Each component is 
standardized to fall in the 

range of 0 to 100, giving a 
final WPI value between 0 
and 100. 

Nine out of 16 individual 
indicators normalized 

(Sullivan, 2011: 631). 

Data 

Reduction 
and Factor 
Retention 

Not addressed by 
Sullivan and Meigh 

(2005). 

FVI: Number of indicators 
reduced by combining use 

of derivative and 
correlation methods with 
a survey of expert 

knowledge (Balica and 
Wright, 2010). 

CCFVI: multi-collinearity 
analysis applied to reduce 
from 30 to 19 coastal 

indicators (Balica, 2012a; 
Balica et al., 2012). 

Begins with a limited set of 
indicators. 

Begins with a small set of 
candidate indicators. 

Principal component 
analysis (PCA) (e.g., Cho 

et al., 2010; Giné Garriga 
and Pérez Foguet, 2010). 

Cho et al. (2010) 
proposed two simplified 
WPIs, a three-component 

version and a two-
component version, as 
more cost-effective and 

viable alternative 
approaches. 

Begins with a small set of 
candidate indicators. 
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Climate Vulnerability 

Index (CVI) 

Flood Vulnerability 
Index (FVI) and 

Coastal City Flood 
Vulnerability Index 

(CCFVI) 

Livelihood 
Vulnerability Index 
(LVI) and LVI-IPCC 

Socio-Climatic 
Vulnerability Index 

(SCVI) 

Water Poverty Index 

(WPI) 

Water Vulnerability 

Index (WVI) 

Weighting 

and 
Aggregation 

Methods 

Initially, components are 
equally weighted (i.e., set 
to 1) to establish a base 
rate. This step is 

followed by 
experimentation with 
alternative weighting 

schemes based on 

participatory consultation 
and expert opinion. The 

weight for each 
component is context-
specific. 

Stakeholder involvement 
in weighting indicators is 
recommended (Balica et 
al., 2012). 

Balanced weighted average 
approach where each 
subcomponent contributes 
equally to the overall 

index even though each 
major component 
comprises a different 

number of 

subcomponents. 
Weighting scheme can be 

adjusted. 

 

Weighting not addressed 
by Torres et al. (2012). 
Aggregation of gridded 
data. 

Equal or differential 
weights can be applied to 
both the components and 
subcomponents. Equal 

weights should be applied 
initially to calculate a 
baseline value. Giné 

Garriga and Pérez Foguet 

(2010) compare different 
aggregation methods. 

Interviews and workshops 
held to gather additional 
qualitative information 
from the perspective of 

local people. These 
sources of qualitative data 
were analyzed and 

interpreted to evaluate the 

relative importance of 
different aspects of 

vulnerability and to 
explore differential 
weighting schemes. 

Uncertainty 
and 

Sensitivity 

Analysis 

Not addressed by 
Sullivan and Meigh 

(2005). 

Insufficiently addressed in 
the available literature. 

There is a brief mention of 
sensitivity analysis in the 
Discussion section of 

Balica et al. (2009: 2579). 

Not addressed in the 
available literature. 

Not addressed by Torres 
et al. (2012). 

Giné Garriga and Pérez 
Foguet (2010) apply 

sensitivity analysis to test 
the robustness of the WPI 
and improve its 

transparency. 

Not addressed by Sullivan 
(2011). 

Visualization 
of Results 

Results are mapped 

(spatial vulnerability 
assessment). 

Bar graphs, line graphs, 

and spider diagrams are 
used. 

The seven component 

scores of the LVI are 
displayed using spider 

diagrams. 

The three component 
scores of the LVI-IPCC are 

displayed using triangle 
diagrams. 

Results are mapped 

(spatial vulnerability 
assessment). 

Results have been mapped, 

displayed in bar graphs, 
and displayed in spider 

diagrams. 

 

Results are displayed 

graphically using multi-axis 
graphs (spider diagrams) 

showing component values 

for different municipalities 
and mapped (spatial 
vulnerability assessment) 
to show variation in 

vulnerability at municipal 
level across the basin. 

Validation 

and 
Verification 

Further work is needed 
to improve the 
methodology. Wider 

application and 
component refinement 
recommended. 

The FVI methodology was 
first developed and applied 
at the river basin scale 

(Conner and Hiroki, 
2005). It has since been 
refined and extended to 

other spatial scales (Balica, 

2007, 2012; Balica and 
Wright, 2009, 2010; Balica 
et al., 2009, 2012). 

Application to additional 
case studies at various 
scales is expected to lead 

to further methodological 
improvements. 

Further work and wider 
application needed to 
improve the methodology. 

Hahn et al. (2009) 
recommend refinement of 
the Social Networks 

subcomponents. 

Further work and wider 
application needed to 
improve the methodology. 

Torres et al. (2012) 
recommend refinements 
by using higher-resolution 

regional climate models 

and more advanced 
statistical downscaling 
techniques, and by 

experimenting with other 
social vulnerability 
indicators. 

The WPI has been applied 
at a variety of scales, in 
several different countries, 

and by multiple authors. A 
rich literature, published 
from 2002 to 2011, 

documents methodological 

challenges and 
improvements. 

Further work is needed to 
refine the methodology 
and to improve its validity, 

for example, by including 
more information on 
water quality (Sullivan, 

2011). 
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Climate Vulnerability 

Index (CVI) 

Flood Vulnerability 
Index (FVI) and 

Coastal City Flood 
Vulnerability Index 

(CCFVI) 

Livelihood 
Vulnerability Index 
(LVI) and LVI-IPCC 

Socio-Climatic 
Vulnerability Index 

(SCVI) 

Water Poverty Index 

(WPI) 

Water Vulnerability 

Index (WVI) 

Transparency 

and Flexibility 

Offers transparent 
methodology. 

Offers a flexible design. 

Transparent methodology 
made available for public 
review and scrutiny in 
multiple publications and 

online at unesco-ihe-
fvi.org. This website is 
intended to serve as a 

collaborative interface to 

create and maintain a 
“network of knowledge” 

that can support 
advancement of the 
methodology. 

The FVI offers a flexible 
design. Selection of 

indicators can be scale-, 
context-, and site-specific. 

Offers transparent 
methodology. 

Offers a flexible design. 

Offers transparent 
methodology. 

Offers a flexible design. 

Offers transparent 
methodology. 

Offers a flexible design. 

Offers transparent 
methodology. 

Offers a flexible design. 

Main 

Citation(s) 

Sullivan and Meigh (2005) Balica (2007, 2012a, 

2012b); Balica and Wright 
(2009, 2010); Balica et al. 
(2009, 2012); Connor and 

Hiroki (2005); United 

Nations Educational, 
Scientific, and Cultural 

Organization (UNESCO)-
IHE (2012)  

Hahn (2008); Hahn et al. 

(2009) 

Giorgi (2006); Torres et 

al. (2012) 

Cho et al. (2010); Cullis 

and O'Regan (2004); 
Fenwick (2010); Giné 
Garriga and Pérez Foguet 

(2010, 2011); Heidecke 

(2006); Lawrence et al. 
(2002); Molle and Mollinga 

(2003); Pérez-Foguet and 
Giné Garriga (2011); 
Sullivan (2002); Sullivan 

and Meigh (2007); Sullivan 
et al. (2003, 2006) 

Sullivan (2011) 
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3.1 DEVELOPING A COHERENT AND COMPELLING THEORETICAL AND 

CONCEPTUAL FRAMEWORK 

To develop a composite index successfully, it is important to have a clear understanding of how it will be 

used, i.e., the decisions the index is intended to inform, the information needed to inform those 

decisions, and the key elements required to make informed decisions. Therefore, the following 

questions should be considered during the composite index theorizing, conceptualization, and framing 
process: 

 What is the primary motivation for composite index development and use? 

 What specifically is the composite index intended to measure and monitor, and toward what 
goal(s)? 

 Who is intended to benefit from and/or gain insights from the composite index results? 

 What types of benefits and/or insights are those people expected to gain? 

By clearly defining the target concepts, such as the multidimensional concepts of climate vulnerability 

and climate resilience, and by establishing the theoretical framework, context, purpose, and target 

audience(s) for the index, process participants can delineate meaningful broad themes, core index 

categories (often referred to as index domains or dimensions), and subcategories needed to organize 

and group indicators to allow for aggregation. A few examples of broad themes related to climate 

change are flood vulnerability, water sector vulnerability, and livelihood vulnerability. These broad 

themes may be broken down into core vulnerability index categories such as climate exposure, 

sensitivity or susceptibility, and adaptive capacity or resilience. Within a core category, individual 

indicators may be grouped into subcategories (and subindices) such as poverty, health infrastructure, 

education, access to resources and services, and quality of governance. Throughout this theorizing, 

conceptualization, and framing process, participants should explore meaningful variables and 

corresponding indicators or indicator sets to operationalize the composite index in accordance with the 

“fitness-for-purpose” principle (OECD, 2008; see also Hinkel, 2011: 203-205). In other words, the 

quality of the composite index depends on the careful and thoughtful selection and combination of 
variables to fit the needs of the intended users. 

The initial stage of composite index development should focus on exploring and evaluating relevant 

theoretical approaches and key concepts, as well as conceptualizing the composition and structure of 

the complex system of analysis or the multidimensional issue of interest (Booysen, 2002; Nardo et al., 

2005; Eriksen and Kelly, 2007; OECD, 2008; Kenney et al., 2012; Maggino and Zumbo, 2012; Ravallion, 

2012). To create a robust composite index, experts and stakeholders should be involved at this stage to 

contribute their knowledge and experience by providing multiple viewpoints and insights regarding 

evolving bodies of theory, terminology and conceptual definitions, normative debates and agendas, 

system attributes of concern, temporal considerations, and measurement practice. As Bohle et al. 

(1994), Eakin and Luers (2006), Smit and Wandel (2006), Füssel (2007), Jean-Baptiste et al. (2011), 

Preston et al. (2011), Kienberger (2012), and others discuss, existing theoretical and conceptual 
approaches to vulnerability research and vulnerability assessment include, but are not limited to: 

 the risk-hazard approach to vulnerability, which addresses biophysical exposure and sensitivity 

(Füssel, 2007; Costa and Kropp, 2013); 

 the place-based social vulnerability approach, which builds on the risk-hazard approach by explicitly 

focusing on the demographic and socioeconomic factors that increase or reduce the impacts of 

hazard events on local populations (Cutter et al., 2000, 2003, 2009; Cutter and Finch, 2008; Cutter, 

2010); 
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 the disaster pressure and release (PAR) model, which emphasizes the underlying (i.e., root) causes of 
disaster and the social production of risk (Blaikie et al., 1994; Wisner et al., 2004; Füssel, 2007); 

 the political economy approach to vulnerability, which analyzes social, economic, and political 

processes in historical context and asks who is most vulnerable and why (Füssel, 2007); 

 the political ecology approach to vulnerability, which builds on the political economy approach but 

delves deeper to examine social inequalities and social conflicts, as well as differential impacts and 
differential recovery, coping, and adaptation capacities; 

 the social-ecological resilience approach, which conceptualizes vulnerability as a dynamic property of 

coupled human-environment systems that respond to a variety of stresses and shocks (including 

disturbances associated with hurricanes, floods, landslides, heat waves, droughts, and wildfires), and 

suggests that human-managed resource systems should allow for dynamic learning and enhance the 

flow of different types and sources of knowledge across multi-scale nested governance systems (e.g., 

Ernstson et al., 2010; Cabell and Oelofse, 2012); and 

 integrated (or hybrid) approaches (Eakin and Luers, 2006; Füssel, 2007; IPCC, 2012). 

If those engaged in the composite index creation process determine that previously developed 

approaches are insufficiently compelling or not fit-for-purpose, they may decide to develop their own 
theoretical and conceptual framework. 

3.2 SCOPE AND SPATIAL SCALE OF ANALYSIS 

Climate vulnerability and resilience are geographically and socially differentiated, reflecting conditions, 

processes, driving forces, and interacting factors that vary depending on spatial scale and local context. 

Thus, one of the major challenges of composite index development is to select indicators that are 

appropriately matched and most relevant to the spatial scale of vulnerability assessment, decision-

making, and policy and management objectives. The overall spatial extent (scope) of the study region 

and the comparative units of analysis may correspond closely to standard administrative units (e.g., 

nations, states/provinces, counties, municipalities, districts, villages, census enumeration units, 

households, firms), or they may be other types of regions and exposure units (e.g., hydrologic units such 

as river basins, watersheds, and aquifers; coastal regions; ecosystem types; city regions; transboundary 
zones; communities; raster cells) (Parris and Kates, 2003; Kenney et al., 2012; Costa and Kropp, 2013). 

Different patterns of vulnerability and resilience may result from applying the same index approach at 

different spatial scales (Cullis and O’Regan, 2004; Tate, 2012). Correlations between variables may 

increase with the level of aggregation (Tate, 2013). National-level indicators and indices mask higher-

resolution variations in vulnerability and resilience at local scales (Sullivan, 2002; Vincent, 2004; 

McLaughlin and Cooper, 2010; Kenney et al., 2012). Therefore, while it may be feasible to downscale 

certain broad-scale composite index approaches successfully (Birkmann, 2007), it would be unwise to 

simply adopt a national-level index approach for a subnational- or local-scale study without adequate 

consideration of the potential need for modifications and adjustments; similarly, aggregation of local 

scale findings to estimate vulnerability and resilience at broader scales may be methodologically 

questionable (Vincent, 2007). Instead, the structure and composition of a composite index should take 

scale-dependent variations into account to be as scale-specific as possible. In some cases, it may be 

feasible to develop a spatially nested approach to indicator selection and index construction for 

coordinated assessments at micro-, meso-, and macro-scales of analysis (Sullivan and Meigh, 2005; Balica 
and Wright, 2010; McLaughlin and Cooper, 2010; Kenney et al., 2012). 
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3.3 DETERMINING THE STRUCTURAL DESIGN OF A CLIMATE 

VULNERABILITY OR RESILIENCE INDEX 

Most social vulnerability indices adopt one of three commonly used structural designs: (a) deductive; (b) 

hierarchical; or (c) inductive (Tate, 2012, 2013). None of these architectures is inherently better or worse 

than another, but they may vary in robustness and performance depending on the index configuration 

(Tate, 2012). The deductive approach is theory-driven and typically synthesizes a relatively small set of 

indicators (Niemeijer, 2002; Vincent, 2007; Balica and Wright, 2010; Hinkel, 2011; Balica, 2012b). 

Hierarchical designs commonly synthesize roughly 10 to 20 indicators arranged into subindices 

representing major themes or core domains, enabling meaningful positioning of each indicator to 

represent distinct components of the system of analysis (Maggino and Zumbo, 2012; Tate, 2012, 2013). 

The inductive approach to composite index development is primarily data-driven and tends to begin 

with a large set of candidate indicators (more than 20 variables), which is reduced to a smaller set prior 

to aggregation (Niemeijer, 2002; Vincent, 2007; Balica, 2012b; Tate, 2012, 2013). All approaches must: 

consider how index components may be nested, consider how certain elements may fit more than one 

category, and use sensitivity analysis to understand how distinct indicators within or across categories 
influence the numeric outputs. 

3.4 THE INDICATOR SELECTION PROCESS AND SELECTION CRITERIA 

Generally, a composite index is developed to either measure a multidimensional concept or to describe 

a system. In cases where the goal is to measure a multidimensional concept, aggregation of a 

parsimonious set of indicators can be effective. Large sets of indicators are needed when the goal is to 
construct a model of a system. 

While indicators are often obtained from existing data sources, they can also be sourced by planning and 

implementing new data collection efforts. Once a pool of potential indicators is identified, several 

considerations need to be addressed during the indicator selection process for integration in a 

composite index (Parris and Kates, 2003; Adger and Vincent, 2005; Nardo et al., 2005; Sullivan and 

Meigh, 2005; OECD, 2008; Van de Kerk and Manuel, 2008a; Hinkel, 2011; Kenney et al., 2012). The 

strengths and weaknesses of each candidate indicator should be discussed, assessed, and recorded in a 

summary table on data set characteristics (OECD, 2008). As stated at the beginning of this section, it is 

important to be aware that the variables that are easiest to measure or most readily available are not 

necessarily analytically sound or valid indicators. As Barnett et al. (2008: 106) recognize, indicators are 

sometimes “selected not because the data reflect important elements of a model of vulnerability, but 

because of the existence of data that are relatively easy to access and manipulate.” Care should be taken 
to avoid this pitfall.  

Decisions about whether to include or exclude indicators involve highly pragmatic criteria, as follows: 

 Data availability from public or private sources, including the cost, frequency, timeliness, consistency, and 

accessibility of available data and the temporal and spatial coverage for a particular indicator; 

 If periodic updates are planned, then it is important to ascertain institutional commitments to update 
and maintain constituent data sets, and to choose data accordingly; 

 In situations where new data is to be collected, the measurability of the variable given time, labor, 
and budget constraints; 

 Data quality (e.g., data accuracy; whether or not the data are adequately georeferenced and dated); 

 The degree of salience (How relevant is the indicator to the intended users of the index?); and 

 The degree of audience resonance (How meaningful is the indicator to the intended audience?). 
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Additional selection criteria may be highly subjective and shaped by theoretical choices and value 

judgments, including potentially contested views about indicator relevance, suitability, construct validity (i.e., 

whether or not the indicator measures the intended component of the index), and representativeness 

(i.e., whether or not the indicator represents underlying vulnerability or resilience). Indicator selections 

are often shaped by statistical issues, such as the comparability of available data sets and whether or not 

the available data samples are sufficiently large to ensure statistically significant results. All indicator data 

sources and methods should meet acceptable standards of transparency, credibility, reliability, and 

legitimacy. If any compromises are made in the indicator selection process for practical reasons (e.g., to 
overcome data scarcity), then these compromises should be made explicit. 

Indicator selection should be an iterative rather than a linear process. That is, once a set of indicators 

has been selected and aggregated, the composite index must be tested using uncertainty analysis and 

sensitivity analysis (see Section 3.9), the index output must be evaluated, and, based on the results of 

these tests and evaluations, the set of indicators must be adjusted to improve the quality of the index 

(M. Gall, personal communication, August 20, 2013). 

3.5 EVALUATION OF DATA QUALITY AND POTENTIAL SOURCES OF 
DATA ERROR 

Evaluation of data quality during the indicator selection process should include the identification and 

assessment of all potential sources of data error in social, economic, political, environmental, biological, 

and physical data sets.5 The margins of error of all indicators should be understood, explicitly 

acknowledged, and disclosed (Kaufmann and Kraay, 2007). Measurement error of input data is a source 

of uncertainty in index output (Tate, 2013). The combination of different data sources may amplify the 
influence of measurement error and thereby bias final results.  

Coverage error that results in missing some important segments of the population is a common concern 

in the evaluation of both census (e.g., undercounts) and survey data quality (Tate, 2013). Other types of 

measurement error associated with surveys include sampling error, problems in survey dissemination, 

non-response, ambiguities in survey questions or responses, differences of opinion between 

respondents, and data processing errors (Kaufmann and Kraay, 2007; OECD, 2008). Missing values and 
errors due to data updating and formula revisions are additional concerns (Wolff et al., 2011). 

When individual indicators are derived from geospatial Earth observation data, such as satellite-based 

remote sensing, evaluation of data quality must consider the degree of adherence to data quality 

standards and the level of completeness of metadata records (Yang et al., 2013). In the case of spatial 

data on the occurrence and distribution of climate-related hazards, data sets may have significant 

temporal and spatial gaps. Problems associated with climate-related station data collection systems, such 

as inadequate spatial coverage of hydrometeorological observation networks and weak data 

management capacities, can cause data error in a variety of data sets including those on rainfall, 
temperature, stream flow, wind speed, soil moisture, and sea level. 

Daly (2006: 708) highlights issues and difficulties with assessing error in high-resolution spatial climate 

data sets derived from remote sensing, numerical models, and station data interpolation, including the 

need for “the user to have a working knowledge of what the basic spatial climate-forcing factors are; 

how they affect climatic patterns; where, when, and at what spatial scale they occur; and how they are 

handled by the major interpolation techniques.” Spatial climate-forcing factors on precipitation and 

                                                

5 It is admittedly difficult to ascertain sources of error or error levels in many data sets that are produced without peer 

review, and even in those that are peer reviewed. Many public domain data sets lack information on sources or levels of 

data error. 
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temperature patterns are physiographic features such as elevation, terrain, water bodies, and coastal 

proximity. Similarly, Bishop and Beier (2013) stress the trade-off between resolution and realism when 

using high-resolution gridded historical climate products, which are model outputs that usually have 
increasing uncertainty at higher resolutions. 

3.6 OVERCOMING INCOMMENSURABILITY: DATA TRANSFORMATION 

Once one or more indicator sets are selected, integration of the selected indicators into subindices and 

a final composite index may require data transformation by means of data normalization or data 

standardization techniques; that is, data sets measured using different scales or measurement units can 

be made comparable by transforming them into a common scale or measurement unit and/or by 

adjusting the directionality of the values by performing inverse adjustment (Booysen, 2002; Nardo et al., 

2005; Cherchye et al., 2007; Barnett et al., 2008; OECD, 2008; Abson et al., 2012; Kenney et al., 2012; 

Tate, 2012, 2013). For example, in order to make values comparable across administrative units, values 

may be transformed to a fixed scale (e.g., percentages) or they may be denominated by population or 

land area. Inverse adjustment may be applied to data sets for attributes such as income, wealth, and 
access to medical care, in which higher values represent lower levels of vulnerability (Tate, 2013). 

Indices adopting deductive and hierarchical designs commonly apply min-max normalization (min-max 

linear scaling) to transform values to a minimum-maximum scale (e.g., between 0 and 1), whereas indices 

using inductive designs tend to apply the z-score normalization method that produces variables with a 

mean of zero and a standard deviation of one (Nardo et al., 2005; Barnett et al., 2008; Tate, 2012, 

2013). The z-score normalization method is preferable to min-max linear scaling when data sets contain 

extreme values (outliers), but in either case it may be necessary to trim the tails of the distribution 

(Booysen, 2002; Nardo et al., 2005; Tate, 2013). Cherchye et al. (2007) and Tate (2012) stress that the 

data normalization stage of composite index development deserves rigorous methodological scrutiny, 

since statistical artifacts may have a major effect on scores. Extreme values and skewed data sets should 

be identified and accounted for at this stage of the process, and log transformations may be required in 
order to approximate more of a normal distribution (OECD, 2008). 

3.7 DATA REDUCTION AND FACTOR RETENTION 

When starting with a large number of candidate indicators, it is desirable to reduce the pool by 

identifying the most significant indicators, removing indicators of low relevance, and minimizing the 

redundancy of highly correlated variables. A variety of statistical techniques and stakeholder engagement 

processes are available to carry out the indicator reduction process, such as exploratory factor analysis, 

principal component analysis (PCA), derivative method, correlation method, expert survey, and 

stakeholder discussion (Adger and Vincent, 2005; Balica and Wright, 2010; Balica et al., 2012; Babcicky, 
2013).  

A simple correlation table can help to identify which indicators are highly correlated with one another 

to the degree that one might safely be removed. When PCA is used to reduce a large indicator set to a 

smaller set of uncorrelated factors, the Kaiser criterion (i.e., eigenvalue greater than one) is usually 

applied to decide how many factors to retain (Deressa et al., 2008; OECD, 2008). However, as Tate 

(2012) points out, use of the Kaiser criterion may overestimate the number of factors to keep, and 
parallel analysis may be a better method for determining the number of factors to retain from a PCA. 

3.8 WEIGHTING AND AGGREGATION METHODS 

There are multiple approaches for weighting and aggregating components in the process of constructing 

a multidimensional composite index. Given the wide range of available options, analysts should make the 

weighting and aggregation methods they select transparent by providing clear documentation of 

procedures and by communicating how methodological decisions are shaped by the effort’s goals and 
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underlying theoretical framework, conceptual definitions, the structural design of the index, the spatial 

scale of analysis, the properties of the data, and index dimensionality (OECD, 2008; Maggino and 

Zumbo, 2012). Assignment of numerical weights should be tested by sensitivity analysis. 

Differential weighting, also referred to as unequal weighting, can be applied when there is sufficient 

knowledge and understanding of the relative importance of index components or of the trade-offs 

between index dimensions (Belhadj, 2012; Decancq and Lugo, 2013; Tate, 2013), whereas equal weighting 

is typically applied when the differences in component significance or the trade-offs between dimensions 

are poorly understood and therefore assignment of differential weights cannot be reliably justified, or 

when there is a lack of agreement about the appropriate weighting scheme (Booysen, 2002; Cherchye et 

al., 2007; OECD, 2008; Nguefack-Tsague et al., 2011; Belhadj, 2012; Tate, 2012, 2013; Decancq and 

Lugo, 2013; Tofallis, 2013). It is important to be aware that when an index synthesizes multiple 

dimensions, assignment of equal weights to individual indicators will lead to unequal weighting of index 

dimensions if the number of individual indicators in each dimension differs (OECD, 2008). If this is the 

case, it may be desirable to adjust the individual indicator weights, or to first aggregate subindices and 

then aggregate these to the overall index, so that the dimensions are equally weighted. Furthermore, as 

Tate (2013: 530) explains, “the existence of high correlations between indicators might introduce 

implicit weighting into an equal weighting scheme, as the associated dimensions could be effectively 
double counted.” 

When the decision is made to experiment with and set unequal weights to index components, these 

weights can be assigned by means of normative, data-driven, or hybrid approaches (Decancq and Lugo, 

2013). Normative approaches include use of participatory methods — such as expert consultation, 

stakeholder discussion, and public opinion surveys — to inform weighting schemes on the basis of the 

expertise, experience, local knowledge, perceptions, value judgments, preferences, and insights of 

particularly relevant individuals and groups (Booysen, 2002; Chowdhury and Squire, 2006; Cherchye et 

al., 2007; Barnett et al., 2008; OECD, 2008; Kienberger, 2012; Decancq and Lugo, 2013). Data-driven 

approaches may be preferred when there is substantial disagreement among the participants or 
underrepresentation of key social groups as a result of participant selection bias. 

Data-driven differential weighting procedures apply statistical methods to generate indicator weights. As 

Blancas et al. (2013) point out, use of statistical procedures to determine weights may help to 

counteract the influence of subjective decisions made at other stages of the index design process. 

Statistical methods, such as PCA and factor analysis, may be applied to test indicators for correlation, 

thus allowing analysts to adjust the weighting scheme by reducing the weights of correlated indicators 

or, as mentioned above in Section 3.7, to minimize correlation and identify a more parsimonious set by 

removing redundant indicators. PCA and factor analysis enable analysts to generate weighting schemes 

that account for as much of the variation in the data as possible with the smallest possible number of 

indicators (Deressa et al., 2008; OECD, 2008; Nguefack-Tsague et al., 2011; Abson et al., 2012; Tofallis, 

2013). The results of a correlation-based PCA may provide justification for equal weighting (Nguefack-

Tsague et al., 2011). A number of studies have used regression coefficients in linear regression or the 

inverse of the coefficient of variation to arrive at statistical weights (Tate, 2013). 

Well-established data-driven approaches to statistical weighting and aggregation in composite index 

construction also include data envelopment analysis (DEA), the benefit-of-the-doubt (BOD) method, and 

multiple criteria decision analysis (MCDA) (Charnes et al., 1978; Nardo et al., 2005; Cherchye et al., 

2007; OECD, 2008; Zhou and Ang, 2009; Hatefi and Torabi, 2010; Zhou et al., 2010; Rogge, 2012; 

Blancas et al., 2013; Tate, 2013; Tofallis, 2013). DEA is a flexible endogenous weighting method that 

eliminates the need for data normalization prior to weight setting; this facet may be seen as an 

important advantage in situations where normalization procedures are found to have an undesirable 

impact on index rankings (Cherchye et al., 2007). One of DEA’s main conceptual starting points is that 
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“(some) information on the appropriate weighting scheme for…performance benchmarking can in fact 
be retrieved from the…data themselves” (Cherchye et al., 2007: 117). 

Commonly applied aggregation options include summation (additive aggregation), multiplication 

(geometric aggregation), and multicriteria analysis. It may be necessary to make the directionality (i.e., 

whether values are positive or negative) of the indicator set uniform before starting the aggregation 

process (Maggino and Zumbo, 2012). The additive aggregation method is the summation of normalized 

and weighted or unweighted indicators to compute the arithmetic mean (Booysen, 2002; Tate, 2012). 

Compensability can be a disadvantage of additive aggregation if a low value in one indicator or dimension 

masks a high value in another, i.e., a deficit in one indicator or dimension can be compensated by a 

surplus in another (Tate, 2013). Geometric aggregation — the product of normalized weighted 

indicators — is a nonlinear approach used to avoid concerns related to interaction and compensability 

(Tate, 2013). Both additive and geometric approaches result in a quantitative index score, while 

multicriteria analysis methods, such as Pareto ranking and DEA, use nonlinear aggregation methods that 

generate index ranks instead of scores (Tate, 2013). Zhou and Ang (2009) compare MCDA aggregation 

methods using the Shannon-Spearman measure. Zhou et al. (2010) analyze the data aggregation problem 

from the perspective of information loss and apply the minimum information loss concept. The reliability 

and robustness of index rankings (rank robustness) can be tested by experimenting with alternative 

weighting systems and aggregation techniques, and comparing the results (Booysen, 2002; Hinkel, 2011; 
Permanyer, 2011, 2012). 

3.9 UNCERTAINTY AND SENSITIVITY ANALYSIS TO ASSESS AND 
IMPROVE INDEX ROBUSTNESS 

Uncertainty analysis and sensitivity analysis are used synergistically and iteratively during composite 

index development to aid in indicator selection, add transparency to the index construction process, and 

explore the robustness of alternative composite index designs and rankings. These analyses inform 

modifications and refinements of index composition and structure to improve the accuracy, credibility, 

reliability, and interpretability of index results (Nardo et al., 2005; Saisana et al., 2005; Gall, 2007; 

OECD, 2008; Schmidtlein et al., 2008; Giné Garriga and Pérez Foguet, 2010; Permanyer, 2011; Tate, 

2012; Decancq and Lugo, 2013; M. Gall, personal communication, August 20, 2013; Tate, 2013). They 

can help index developers to determine if there is a good fit, or a lack of fit, between the adopted 

theoretical model and the selected constituent indicators as well as the extent to which a different 

choice of inputs changes the output ranking. This step allows the developer to test if the weighting 

scheme is actually reflected in the output and if the index is capable of reliably detecting change over 

time and space. Any index that has not undergone empirical evaluation through uncertainty and 

sensitivity analysis remains untested and is unreliable (M. Gall, personal communication, August 20, 
2013). 

Uncertainty analysis “focuses on how uncertainty in the input factors propagates through the structure 

of the composite indicator and affects the composite indicator values” (Nardo et al., 2005: 85). That is, 

it serves to identify and evaluate all possible sources of uncertainty in index design and input factors 

including theoretical assumptions, selection of constituent indicators, choice of analysis scale, data 

quality, data editing, data transformation, methods applied to overcome missing data, weighting scheme, 

aggregation method, and composite indicator formula. Models of complex systems are associated with 

two general forms of uncertainty: (1) aleatoric uncertainty and (2) epistemic uncertainty (Helton et al., 

2010; Tate, 2013). Aleatoric uncertainty results from “heterogeneity or the inherent randomness of 

input parameters and processes” and might affect the input data used in index construction (Tate, 2013: 

527). Epistemic uncertainty results “from an incomplete or imprecise understanding of parameters that 

are modeled with fixed but poorly known values” and can be found throughout the index construction 

process (Helton et al., 2010; Tate, 2013: 527). The degree of epistemic uncertainty associated with each 
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stage will vary depending on the particular index effort; for example, in the case of an index that has 

been designed to analyze vulnerability and resilience at a specific administrative scale of interest, there 

would be little to no uncertainty associated with determining the appropriate spatial scale of analysis 

(Tate, 2013). Uncertainty analysis can be used in the composite index construction process to 
determine the degree of epistemic uncertainty at each stage. 

Sensitivity analysis examines the degree of influence of each input on the index output, thereby revealing 

which methodological stages and choices are most or least influential (Gall, 2007; Giné Garriga and 

Pérez Foguet, 2010; Tate, 2012) and helping to reveal “how much each individual source of uncertainty 

contributes to the output variance” (Nardo et al., 2005: 85). For example, modelers may wish to 

compare index results that are calculated by using alternative weighting schemes, within an agreed upon 

range of variation, to explore whether or not the overall index ranking or specific positions of interest 

within that ranking change substantially (Permanyer, 2012). When secondary data sets are used to 

construct a composite index, adequate understanding of their sources of measurement error is 

necessary to effectively carry out a sensitivity analysis (Hahn et al., 2009). Index sensitivity can be 

assessed one index construction stage at a time using local sensitivity analysis, or choices at multiple stages 

of index construction can be varied and evaluated simultaneously to assess interactions using global 

sensitivity analysis, typically applying Monte Carlo simulation to generate a frequency distribution of index 

ranks for each enumeration unit through the computation of reasonable alternative model 
configurations (Tate, 2012, 2013). 

3.10 VISUALIZATION OF RESULTS 

The tabular results of a composite index can be visually displayed in a variety of ways (see Figure 1 and 

Figures 3 through 8 in the Annex). Attention should be given to how the visualization option selected 

may affect the interpretation of results and ease of understanding. Spider and triangle diagrams are 

commonly used and offer the advantage of displaying the values of all index dimensions in a visually clear 

and appealing way, facilitating comparison of cases (e.g., Sullivan et al., 2003: 197; Van de Kerk and 

Manuel, 2008a; Hahn, 2008: 17, 39-42; Hahn et al., 2009: 84-85; Sullivan, 2011: 634, 638; Balica et al., 

2012: 97). Bar graphs or line graphs can also display the values of index dimensions and overall scores; 

while they may be well-suited for use with indexes having two to five dimensions (e.g., Sullivan, 2011: 

635; Balica et al., 2012: 93), they may not be the best option when trying to display a larger number of 

dimensions. The mapping of index results offers the distinct advantage of revealing geospatial 

relationships and patterns (Sullivan and Meigh, 2005: 75; Sullivan, 2011: 636; Torres et al., 2012: 603; de 

Sherbinin et al., 2014). For examples of vulnerability index mapping in this paper, see Figures 1, 5, and 7 
in the Annex. 

3.11 VALIDATION AND VERIFICATION 

Validation of the conceptual and methodological construct of a composite index requires meaningful 

engagement with and significant input from stakeholders, experts on the geographic area or sector of 

interest, and experts on indicator and index design (Barnett et al., 2008). In data-driven inductive 

approaches, verification of indicators requires statistical analysis, while verification of indicators in 

deductive approaches “involves assessment of the goodness of fit between theoretical predictions and 

empirical evidence” (Eriksen and Kelly, 2007: 516). Statistical internal validation of social vulnerability 

indices is performed using global sensitivity analysis to examine how changes in index construction affect 

index results (Tate, 2012). Another way to validate a composite index is to consider an external 

outcome measure that is conceptually relevant, such as infant mortality, deaths from heat stress, or 

morbidity from a climate-related disease, and then determine whether or not the composite index helps 

to predict the observed spatial patterns. 
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4.0 BEST PRACTICES AND 

CHALLENGES 

As emphasized above, transparency throughout the process of composite index design, use, and 

refinement is essential. First, index developers must have a clear understanding of what the composite 

index is intended to measure, for what purpose, and for which target users and audiences. Developers 

should articulate their rationale for choices made in the index construction process and explain how 

their choices influence index results (Tate, 2012). Uncertainty analysis and sensitivity analysis are not 

optional; they are essential parts of the index construction process. All methodological steps should be 

scientifically and empirically defensible, carefully documented, and disseminated along with the index results 

for rigorous peer review. Methodologies and results also should be communicated clearly and concisely 
to relevant non-technical audiences. 

In addition to meeting high standards of methodological rigor, composite indices should be based on 

trusted, reputable, reliable, and accessible data sources. Disaggregated input data sets and metadata 

should be accessible to audiences, allowing them to link the summary statistics the index produced to 

their underlying values (OECD, 2008; Kienberger, 2012). However, common challenges in composite 

index construction relate to data limitations (Molle and Mollinga, 2003). Important index dimensions may 

lack time-series data. Data on variables of interest may be unavailable, collected inconsistently, or have 
significant gaps and biases.6 

Ideally, composite indices and other indicator approaches should be designed to maximize their flexibility 

and customizability by, for instance, enabling the user to easily modify the structural design, indicator 

selections (e.g., from a larger “menu” of candidate indicators), the weighting scheme, and the aggregation 

method (Booysen, 2002; Sullivan et al., 2003; Kenney et al., 2012). The general methodology should be 

transferable across sites and flexible enough to allow for the development of versions that are context-

specific (Rygel et al., 2006; Vincent, 2007; Below et al., 2012). If data availability and data quality permit, 

and if scientifically defensible, indicators and composite indices should be designed for use at multiple 

spatial scales from national to local (Janetos et al., 2012). Application at different scales may require 
modifications to make the index scale appropriate. 

Construction of a composite index should not be viewed as an end goal, but rather as an analytical tool 

to facilitate the evaluation and interpretation of information, support decision making, promote 

discussion, and attract public attention to an important multidimensional subject (Blancas et al., 2013). 

An ongoing process should be established and maintained to build capacity and continually test and refine 

the overall index, its components and subcomponents, and to regularly update it with new data (Eakin 

and Luers, 2006; Balica and Wright, 2009; Maggino and Zumbo, 2012; Kenney et al., 2012). A number of 

authors have stressed the need for international coordination of data collection, data management, and 

analysis and international guidelines to promote global consistency and to enhance the comparability of 
statistics (Sullivan and Meigh, 2005; OECD, 2008; Sullivan, 2011). 

Lastly, it is critical to acknowledge and address subjectivity and uncertainty at each stage of the composite 

index design process (Booysen, 2002; Cherchye et al., 2007; Vincent, 2007; Barnett et al., 2008; OECD, 

                                                

6 Three general methods for dealing with missing data are case deletion, single imputation, and multiple imputation (Nardo et 

al., 2005: 35-43; OECD, 2008: 15, 24-25). 
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2008; Hahn et al., 2009; Janetos et al., 2012; Tate, 2012, 2013; Blancas, et al., 2013). As Tate (2013: 527) 

points out, “Although there is broad interest in the need to quantitatively model social vulnerability, 

there is far less consensus regarding the ideal set of methods used for the production of indexes. This 

lack of consensus means that uncertainty is introduced into the modeling process whenever an index 

developer chooses between competing viable options.” Sullivan (2011: 639) suggests embracing fuzzy 

approaches, arguing that the uncertainty associated with composite index methodologies and results 

“should not be seen as a disadvantage of the process, but rather one which provides a more honest 

picture of the situation, recognizing explicitly that our understanding is not perfect, and that we need to 
develop policies that are adaptive and flexible in the face of such uncertainty.” 
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5.0 CONCLUDING REMARKS 

AND RECOMMENDATIONS 

The literature review and selected examples of composite indices examined in this paper suggest that a 

substantial body of work and expertise currently exists to provide valuable guidance on the necessary 

stages of composite index design and use for the purpose of climate change vulnerability and resilience 

assessment at subnational scales. Most of these indexing efforts are recent, having emerged within the 

past decade. Few have been thoroughly verified, validated, or gone through multiple iterations toward 

refinement. Nevertheless, they provide a substantive basis for defining best practices, recognizing 

limitations, and identifying remaining challenges. One of the challenges for those with little to no 

experience in this field is that with so many different methodological options available, it can be difficult 

to know how to choose among them or how to implement innovative hybrid and fuzzy approaches. 

Online communities of practice (e.g., the FVI “network of knowledge” described by Balica and Wright 

[2009]) and workshops led by composite index design experts who specialize in climate change 

vulnerability and resilience assessment, as well as participatory approaches, might be useful for sharing 

experiences, advancing knowledge, and encouraging meaningful dialogue about theoretical, 

methodological, and practical concerns. 

In sum, the key steps and recommended best practices for successful composite index design and use 
include the following: 

 View composite indices as analytical, communication, and collaborative tools that have the potential 

to support decision making, planning, policy development, and management systems by: raising 

awareness and improving understanding of a complex, multidimensional issue; promoting discussion; 

and facilitating scenario analysis to examine possible futures. Composite indices should be designed 

for distinct purposes, such as to serve as a measure for tracking and monitoring change or as a tool 

for system assessment. 

 Consider the following questions during the design process: What is the primary motivation for 

composite index development? What specifically is the composite index intended to measure and 

monitor, and toward what goal(s)? Who is intended to benefit from and/or gain insights from the 
composite index results? What types of benefits and/or insights are they expected to gain? 

 Invest sufficient time and effort to explore and evaluate relevant theoretical approaches, conceptual 

frameworks, and key concepts to determine if they are appropriate for use. However, if the existing 

approaches, frameworks, or concepts are not sufficiently compelling or fit-for-purpose, develop 
your own. 

 Delineate meaningful broad themes and dimensions to determine the structural design for 

organizing, grouping, and aggregating indicators (i.e., the composition and arrangement of major 

components and subcomponents). 

 Involve experts and stakeholders during the conceptualization stage to contribute their knowledge, 
experience, and insights early in the index design process. 

 Maintain a participatory and inclusive approach during the index implementation and refinement 
process to encourage experts and stakeholders to build consensus and prioritize action. 
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 Explicitly identify and communicate overarching values and principles, underlying assumptions, 

subjectivities, frameworks of analysis, intended goals and audiences, available data sources, data 

limitations, and uncertainties. 

 Select indicators that are appropriately matched and most relevant to the spatial scale of the 

vulnerability assessment, decision making, planning, and policy and management objectives. 

Determine final indicator selection and index design based on empirical evidence derived from 
uncertainty and sensitivity analysis. 

 Discuss and assess the strengths and weaknesses of each candidate indicator, and record strengths 

and weaknesses in a summary table on data set characteristics. 

 Identify, assess, and disclose all potential sources of data error. 

 When selected data sets are measured using different scales or measurement units, overcome 

incommensurability by normalizing the data, i.e., transforming the data into a common scale or 

measurement unit and/or by adjusting the directionality of the values by performing inverse 

adjustment. 

 When starting with a large number of candidate indicators, reduce the pool by identifying the most 

significant indicators, removing indicators of low relevance, and minimizing the redundancy of highly 
correlated variables. 

 The applied weighting and aggregation methods must be made transparent by providing clear 

documentation of procedures and by communicating how these methodological decisions are 

shaped by the effort’s goals and underlying theoretical framework, conceptual definitions, the 

structural design of the index, the spatial scale of analysis, the properties of the data, and index 
dimensionality. 

 Uncertainty analysis and sensitivity analysis are not optional; rather, they are essential steps during 

index development and indicator selection that add transparency to the index construction process 

and aid in determining the robustness of alternative composite index designs and rankings. 

 Consider different options for displaying composite index results in order to select visualization 
approaches that facilitate interpretation and understanding. 

 To validate and verify a composite index, seek meaningful engagement with and significant input 

from stakeholders and experts on the geographic area or sector of interest, and experts on 

indicator and index design.  

 Use global sensitivity analysis to perform statistical internal validation. 

 Design composite indices to maximize their flexibility and customizability by enabling users to easily 

modify the structural design, indicator selections, the weighting scheme, and the aggregation 
method. 

 Maintain transparency throughout the process of composite index design, use, and refinement.
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ANNEX. SUMMARIES OF SELECTED 

COMPOSITE INDICES 

To illustrate the process of composite index design and use with specific examples, this annex describes 

six composite indices that have been developed and implemented within the past decade to assess 

relative vulnerability to climate change at subnational levels. Each of the six examples focuses on one or 

more climate-sensitive systems or sectors (e.g., water, agriculture, food, livelihoods, human health, river 

basins, urban areas, and coastal regions) and has been implemented in African, Latin American, and/or 

Caribbean contexts. While an effort has been made to identify the methodological strengths and 

weaknesses of each example presented, quantitative examination and comparative evaluation of the 
quality and accuracy of the construction and output of these indices is beyond the scope of this paper.7 

To the extent possible, based on the available literature and online sources of information (and, in the 

case of the Livelihood Vulnerability Index, personal communication with the lead development 

practitioner and author), each of the summaries aims to cover the following theoretical and 

methodological issues: the central purpose and history of index development, primary goals and 

audiences, analytical scope and scale, theoretical and conceptual framework, structural design, index 

composition, data sources, indicator selection, data transformation, data reduction, factor retention, 

weighting, aggregation, results, visualization, and validation. 

A.1 CLIMATE VULNERABILITY INDEX 

With a focus on water-related issues, the Climate Vulnerability Index (CVI) aims to combine social, 

economic, environmental, and physical factors to assess relative vulnerability to current climate 

variability (Sullivan and Meigh, 2005). The CVI approach can be applied to regions or zones representing 

different geographical or ecosystem types, such as small islands, developing cities, mountainous regions, 

semi-arid regions, over-abstracted or degraded catchments, and low-lying coastal zones (Sullivan and 

Meigh, 2005: 72). The CVI scores estimate vulnerability to existing climate variability. These spatial 

estimates of vulnerability are then used to compare exposure units within a region or zone. Patterns of 

vulnerability can then be examined within the region of interest (e.g., a group of countries, a country, or 

a subnational region) to understand spatial variations. Sullivan and Meigh (2005: 73) outline the following 

steps for estimating the CVI: 

 Identify zones of current and potential water stress. 

 Identify geographical types likely to be vulnerable, select geospatial variables for each, and select 
sample locations within the geographical or ecosystem types. 

 Collect and collate all relevant data for the selected sample locations. 

 Construct scenarios of social, economic, and environmental change to combine with estimates of 

change in water resources derived from climate impact assessments using global or regional climate 
model outputs (this step requires a high level of expertise). 

                                                

7 Gall (2007) quantitatively evaluated existing social vulnerability indices, testing them through uncertainty and sensitivity 

analysis to determine if and how they meet their claims, and found that most of these indices did not hold up under 

empirical scrutiny. 
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 Calculate CVI scores for the present situation and under the combined change scenarios. 

 Interpret the meaning of the CVI scores in terms of impacts on people. 

 Calculate results at a range of spatial scales, incorporating uncertainty. 

The CVI integrates the following six major components and their subcomponents (Figure 1): 

1) Resource (e.g., assessment of surface water and groundwater availability, evaluation of water storage 

capacity and reliability of resources, and assessment of water quality and dependence on imported 
and/or desalinated water) 

2) Access (e.g., access to clean water and sanitation and access to irrigation coverage adjusted by 

climate characteristics) 

3) Capacity (e.g., expenditure on consumer durables or income; gross domestic product [GDP] as a 

proportion of gross national product, and water investment as a percentage of total fixed capital 

investment; educational level of the population and the under-five mortality rate; existence of 

disaster warning systems and strength of municipal institutions; percentage of people living in 
informal housing; and access to a place of safety in the event of flooding or other disasters) 

4) Use (e.g., domestic water consumption rate related to national or other standards and agricultural 
and industrial water use related to their respective contributions to GDP) 

5) Environment (e.g., livestock and human population density, loss of habitats, and flood frequency) 

6) Geospatial (e.g., extent of land at risk from sea-level rise; degree of isolation from other water 

resources and/or food sources; deforestation, desertification, and/or soil erosion rates; degree of 

land conversion from natural vegetation; and deglaciation and risk of glacial lake outbursts) 
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FIGURE 1. COMPARISON OF THE CVI CALCULATED FOR PERU AT THE 

DEPARTMENT AND DISTRICT LEVELS 

 
Comparison of the CVI calculated for Peru at the department level (left map) and at the district level (right map) 

showing the percentage of households with a piped water supply, using data obtained from Peru’s National 

Institute of Statistics and Informatics. Source: Reproduced from Sullivan, Caroline, and Meigh, 2005, with 
permission from the copyright holders, IWA Publishing.  

The CVI is calculated on a scale from 0 (least vulnerable) to 100 (most vulnerable). Initially, the 

components can be equally weighted to calculate a base rate CVI. Participatory consultation and expert 

opinion by means of a transparent process should then be used to develop a weighting scheme. The CVI 

can serve as a dynamic modeling tool for developing future scenarios based on climate change 
projections and assumptions about future driving forces. 

Developers of the CVI claim that it is applicable at multiple spatial scales and suitable for spatially nested 

application; however, given that application of the CVI to date has been limited, empirical evidence to 

support these claims is lacking. Notably, Sullivan and Meigh (2005) failed to address data transformation, 

data reduction, uncertainty analysis, or sensitivity analysis in the CVI methodology. They acknowledge 

the need for wider application of the CVI methodology and structural refinement of the index; 

therefore, while the CVI appears to provide a flexible design, further work is needed to improve its 
methodology. 

Sullivan and Meigh (2005: 72) report using the following three indicator selection criteria: data 

availability, practicality, and degree of effectiveness at “expressing key aspects of vulnerability that are 

relevant locally.” To date, the CVI has relied primarily on data available from existing sources, and 

developers have emphasized the importance of integrating the highest-quality and most recent data 

available at appropriate spatial and temporal resolutions. Initially, components can be equally weighted 
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(i.e., set to one) to establish a “base rate CVI” prior to experimentation with alternative weighting 

schemes based on participatory consultation and expert opinion, which should also be tested with 

sensitivity analysis. The weight for each component is context specific, i.e., determined by the relevance 

of the component in a specific place. CVI scores can be mapped to facilitate comparisons across 

exposure units and to identify regional patterns. To assess expected or possible future climate 

vulnerability for comparison with scores for current conditions, input values can be adjusted according 
to projections or future scenarios. 

A.2 FLOOD VULNERABILITY INDEX AND THE COASTAL CITY FLOOD 
VULNERABILITY INDEX 

The Flood Vulnerability Index (FVI) is an interdisciplinary tool designed to assess flood vulnerability for 

flood risk management at multiple spatial scales, including river basins, sub-catchments, and urban areas  

(Connor and Hiroki, 2005; Balica, 2007, 2012a, 2012b; Balica and Wright, 2009, 2010; Balica et al., 2009, 

2012). The FVI has been designed specifically to assess flood vulnerability due to climate change (Connor 

and Hiroki, 2005). It has been used to identify the main factors responsible for an exposure unit’s flood 

vulnerability and is meant to be used in combination with other decision-making tools. It is intended to 

serve as an easily accessible tool for policy and decision makers. As Balica and Wright (2010: 327) note, 

“the ultimate aim [of the FVI] is to provide the stakeholders with a clear and flexible methodology to 

evaluate flood vulnerability, in order to be used at various scales and in as many case studies as 

possible.” FVI developers seek to use the index to monitor the chronological change of flood 

vulnerability for specific exposure units and to show potential flood vulnerability under future scenarios, 

reflecting socioeconomic trends and climate change. Initially, the FVI methodology was developed to 

assess vulnerability to river flooding. The methodology was later extended to develop the Coastal City 
Flood Vulnerability Index (CCFVI), which aims to assess vulnerability to coastal flooding in urban areas.  

The methodology is transparent and made available for public review and scrutiny in several 

publications. The use of sensitivity analysis is insufficiently addressed in the available literature on the FVI 

and CCFVI, indicating that this critical step has not been applied; there is only brief mention of sensitivity 

analysis in Balica et al. (2009: 2579). The FVI offers a flexible design. The selection of indicators is scale-, 

context-, and site-specific. Further methodological refinements and improvements can be achieved by 

applying the methodology to additional case studies at diverse scales. To support advancement of the 

methodology, the developers of the FVI have established a website (unesco-ihe-fvi.org) to “create a 

network of knowledge between different institutions and universities” and “encourage collaboration 

between members of the network on managing flood vulnerability information” (Balica and Wright, 

2009: 2983-2984). This collaborative web interface requires each network participant to create a user 
account in order to log on and add data that the administrator can then review for verification. 

The FVI and CCFVI standardized values fall between 0 and 1, with higher values being the most 

vulnerable to flood. The FVI architecture consists of four system components (social, economic, 

environmental, and physical) used to assess three main factors influencing flood vulnerability (exposure, 

susceptibility, and resilience) (Figure 2, following page). In the FVI approach, a system’s vulnerability to 
flood events is conceptualized as: 

Vulnerability = Exposure + Susceptibility – Resilience 

Balica et al. (2009: 2574-2575) applied a deductive approach to identify the best possible indicators. To 

simplify and improve upon the original FVI methodology, Balica and Wright (2010) applied an expert 

survey as well as mathematical techniques (derivation and correlation methods), which helped them to 

identify the most significant indicators available and reduce the complexity of the FVI from an initial large 

set of 71 indicators to a smaller set of 28 indicators, of which 20 were selected for the river basin scale, 

22 were selected for the sub-catchment scale, and 27 were selected for the urban area scale. The 
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questionnaire that was used to survey expert knowledge is accessible on the FVI website; it asks experts 
to assign levels of indicator significance on a scale from 5 (very high influence) to 1 (very low influence). 

The indicators considered for the river basin scale included: average rainfall per year of the entire river 

basin, number of days with heavy rainfall, river discharge, degraded area, land use, natural reservation, 

population in flood-prone area, Human Development Index, child mortality, past experience, awareness 

and preparation, communication penetration rate, warning system, evacuation roads, unemployment, 

inequality, and economic recovery. Indicators of urbanized area, rural population, proximity to river, life 

expectancy, and unpopulated area were only used at the sub-catchment scale, while indicators of 

cultural heritage, population growth, shelters, emergency services, industries, contact with river, 

recovery time, and the drainage system were only used at the urban area scale. The following indicators 

were used to assess vulnerability at the river basin and sub-catchment scales, but not at the urban area 

scale: land use (percent area used for industry, agriculture, and other economic activities); economic 

recovery; degraded area; land use (percent forested area); natural reservation; and frequency of 

occurrence. Other indicators were used to assess vulnerability at the sub-catchment and urban area 

scales, but not at the river basin scale: population density; disabled people; flood insurance; dikes and 
levees; water storage capacity of dams; and urban growth. 
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FIGURE 2. INDICATORS USED TO COMPUTE FLOOD VULNERABILITY INDICES 

 
“R” represents river basin scale, “S” represents sub-catchment scale, and “U” represents urban area scale. 
Source: Reproduced from UNESCO-IHE, 2012, with permission from Stefania F. Balica.  

Balica et al. (2012: 74) produced the CCFVI to help “identify the most vulnerable coastal cities, develop 

adaptation measures for them, and assess the effects of future change scenarios.” The three major 

system components of the CCFVI are: the hydro-geological component representing the natural system; 

the socioeconomic component representing the socioeconomic system; and the political-administrative 

component representing the administrative and institutional system. The CCFVI integrates a total of 19 

indicators, which were selected after using multi-collinearity analysis among 30 coastal indicators (Balica, 
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2012a; Balica et al., 2012). The indicators included in the hydro-geological component are: (1) sea-level rise; 

(2) storm surge; (3) the number of cyclones in the past 10 years; (4) river discharge; (5) foreshore slope; 

(6) soil subsidence; and (7) kilometers of coastline along the city. The indicators in the socioeconomic 

component are: (8) cultural heritage (number of historical buildings, museums, etc. in danger when a 

coastal flood occurs); (9) population close to the coastline; (10) growing coastal population; (11) number 

of shelters and hospitals; (12) percent of disabled persons (younger than 14 and older than 65); (13) 

awareness and preparedness; (14) recovery time; and (15) kilometers of drainage. The indicators in the 

political-administrative component are: (16) flood hazard maps; (17) existence and involvement of 
institutional organizations; (18) uncontrolled planning zone; and (19) flood protection. 

Based on city size and physiographic setting, the CCFVI developers selected the following nine cities as 

case studies: Buenos Aires (Argentina); Calcutta (India); Casablanca (Morocco); Dhaka (Bangladesh); 

Manila (Philippines); Marseille (France); Osaka (Japan); Shanghai (China); and Rotterdam (the 

Netherlands). Of these nine case studies, the city of Shanghai was found to be the most vulnerable to 

coastal floods, and the city of Osaka was found to be the least vulnerable (Figure 3). 

FIGURE 3. OVERALL COASTAL CITY FLOOD VULNERABILITY INDEX FOR NINE 

CASE STUDIES 

 
Source: Reproduced from Balica, Wright, and van der Meulen, 2012, with kind permission  
from Springer Science + Business Media. 

Balica et al. (2012) suggest stakeholder involvement in the process of weighting indicators. Bar graphs, 

line graphs, and spider diagrams have been used to display FVI and CCFVI results (Balica et al., 2009; 
Balica and Wright, 2010; Balica, 2012a; Balica et al., 2012). 

Contact for further information: Dr. Stefania Florina Balica, Research Fellow, Hydraulic Engineering and 

River Basin Development, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, 

The Netherlands; E-mail: s.balica@unesco-ihe.org. 

A.3  LIVELIHOOD VULNERABILITY INDEX 

Drawing on the Sustainable Livelihoods Approach (Chambers and Conway, 1992), the Livelihood 

Vulnerability Index (LVI) was designed to support comparative assessments of vulnerability to climate 

variability and climate change at district and community levels (Hahn, 2008; Hahn et al., 2009). The LVI is 

meant to serve as “an assessment tool accessible to a diverse set of users in resource-poor settings” 

and “to inform resource distribution and program design” among humanitarian, development, and public 

health organizations (Hahn, 2008: 18; Hahn et al., 2009: 76, 86). This project was a collaborative effort 
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that researchers at Emory University (Atlanta, GA, USA) and partners at CARE-Mozambique (Maputo, 

Mozambique) undertook. It was Micah Hahn’s thesis project while earning her Master of Public Health at 

the Rollins School of Public Health at Emory University (Hahn, 2008).  

The LVI was piloted in 2007 in two districts of Mozambique to assess household livelihood security, the 

strength of health systems, and community capacity in the context of climate change. To capture 

geographic variability, the Moma District (5,752 km2, more than 329,000 inhabitants) in Nampula 

Province was selected as representative of Mozambique’s coastal communities. The Mabote District 

(14,577 km2, more than 45,000 inhabitants) in Inhambane Province was selected as representative of the 

country’s inland communities. This study analyzed primary data collected through household surveys. 

Toward identifying which household characteristics contribute most to climate change vulnerability in 

each district, the researchers analyzed survey data collected from 200 households in each of the two 

districts (a total of 400 households) on household characteristics by interviewing heads of households. 

When the head of household was not available, the spouse was interviewed instead. Based on 1997 

national demographic census data, the probability proportional to size method was applied to select 20 

villages in each district. Ten households in each village were randomly selected for interviews, which 
lasted 30 minutes on average. 

The structural design of the LVI is based on seven major components: (1) socio-demographic profile; (2) 

livelihood strategies; (3) health; (4) social networks; (5) food; (6) water; and (7) natural disasters and 

climate variability (Figure 4, following page). Hahn (2008) and Hahn et al. (2009) tested two approaches 

to index calculation. In the first approach, they calculated the LVI by synthesizing all seven major 

components. The second approach LVI-IPCC, based on the Intergovernmental Panel on Climate Change 

(IPCC) vulnerability framework, aggregated the seven major components into three contributing factors 

to vulnerability: (1) exposure to natural disasters and climate variability; (2) sensitivity (health, food, and 

water); and (3) adaptive capacity (socio-demographic profile, livelihood strategies, and social networks). 

These core components, their constituent indicators, and survey questions were derived from an 

extensive literature review focused on the variables that affect exposure, sensitivity, and adaptive 

capacity to climate change. They also reflect consideration of the practicality of data collection by means 

of household surveys. 

The LVI is calculated on a scale from 0 (least vulnerable) to 0.5 (most vulnerable). The LVI-IPCC is 

calculated on a scale from -1 (least vulnerable) to 1 (most vulnerable). The quantification methods for 

each of the subcomponents, the household survey questions associated with each subcomponent, the 

original source of each survey question, and the potential limitations and sources of bias associated with 

each survey question are reported in Hahn (2008: 17-33) and Hahn et al. (2009: 77-79). Several of the 

household survey questions were adapted either from Demographic and Health Surveys or from survey 

questions developed by the World Bank, the World Health Organization, and Mozambique’s National 

Statistics Institute. Other questions were developed for the purposes of this study’s questionnaire. 

Adapting an equation previously used in the Human Development Index (HDI) to calculate the life 

expectancy index, the authors normalized the subcomponents, which had been measured on different 

scales (Hahn, 2008; Hahn et al., 2009). They applied a balanced weighted average approach “where each 

subcomponent contributes equally to the overall index even though each major component is 

comprised of a different number of subcomponents” (Hahn et al., 2009: 76). The weighting scheme can 
be adjusted as needed. 

The seven component scores of the LVI are displayed using spider diagrams, while the three component 

scores of the LVI-IPCC are displayed using triangle diagrams. These spider and triangle diagrams are 

used to facilitate a comparison of vulnerability among the major components as well as across districts. 

Overall, Mabote (0.326) was found to have relatively greater climate change vulnerability than Moma 

(0.316). Mabote’s vulnerability scores were higher for socio-demographic profile, livelihood strategies, 
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social networks, and natural disaster and climate variability. Moma’s vulnerability scores were higher for 
health, food, and water. 

One of the strengths of the LVI is its use of primary data collected by using a survey instrument that was 

designed with a clearly framed theoretical, conceptual, and analytical approach. Studies using secondary 

data may be limited by problems such as mismatch of the available data with the conceptual and 

analytical framework of the study, missing data, inconsistent data, incompatibility of data collected at 

different spatial or temporal scales, and limited information about the sources of measurement error in 

the data sets (Hahn, 2008; Hahn et al., 2009). Another advantage of the LVI is that the index calculation 

method is straightforward and accessible to development practitioners (Hahn, 2008; M.B. Hahn, 

personal communication, October 24, 2012). LVI assessments can be repeated in the same location over 

time to monitor changes in the dimensions of vulnerability, and input values can be adjusted to analyze 

the potential change in the vulnerability of study populations under future scenarios reflecting possible 

program or policy shifts (Hahn, 2008). Further work and wider application are needed to improve the 

methodology. For instance, Hahn et al. (2009: 87) suggest “refinement of the Social Networks 
subcomponents in order to more accurately evaluate social bonds.” 

FIGURE 4. VULNERABILITY SPIDER DIAGRAM OF THE SEVEN MAJOR LVI 

COMPONENTS FOR MOMA AND MABOTE DISTRICTS, MOZAMBIQUE 

 
       Source: Reproduced from Hahn, Riederer, and Foster, 2009, with kind permission from Elsevier. 

 

Contact for further information: Micah B. Hahn, Ph.D., M.P.H., Postdoctoral Research Fellow, Centers 

for Disease Control and Prevention, Arboviral Diseases Branch, National Center for Atmospheric 
Research; E-mail: micah.hahn@gmail.com. 

A.4  SOCIO-CLIMATIC VULNERABILITY INDEX 

The Socio-Climatic Vulnerability Index (SCVI) is designed to assess social vulnerability to climate change 

in order to enable comparisons across regions and locations and to help target and prioritize adaptation 

policies and actions by identifying socio-climatic hotspots (Torres et al., 2012). It has been developed to 

provide spatially explicit assessments of social vulnerability to climate change for countries and regions. 

It is intended as a synthetic and socially relevant tool for improving dialogue and communication 

between climate scientists, social scientists, policymakers, and other stakeholders. The SCVI relies on 

existing and salient data sources, i.e., climate data from known climate models, demographic census data, 

and HDI data sets. The SCVI appears to combine the risk-hazard and social vulnerability approaches, 
although Torres et al. (2012) do not explicitly state that this is the adopted conceptual framework.  
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The SCVI integrates two major components: (1) a climate change index such as the Regional Climate 

Change Index (RCCI) developed by Giorgi (2006), which synthesizes more than 100 climate model 

projections; and (2) a social vulnerability index, e.g., combining demographic density (inhabitants/km2) 

and HDI scores (integrating measures of health, education, and poverty). The SCVI is applicable at 

multiple and nested spatial scales of analysis. Index results are mapped to reveal geospatial relationships 

and patterns. The authors illustrate the use of the SCVI by applying it to analysis of the spatial 
distribution of socio-climatic vulnerability in Brazil. 

The RCCI synthesizes more than 100 climate model projections to summarize a large body of 

information about the expected magnitude of climate change in specific regions. Other climate change 

indices can be used instead of or in addition to the RCCI to calculate the SCVI. The SCVI is a relative 

index of climate change vulnerability, i.e., high or low socio-climatic vulnerability scores are intended to 

enable comparisons across regions and locations. It can be applied at multiple spatial scales and can 

synthesize multiple social vulnerability indicators as long as sufficient data is available. The SCVI is not 

intended to substitute the RCCI, but rather to serve as an auxiliary index. In other words, together 

these indices can serve as useful tools for exploratory purposes as well as for improving dialogue and 

communication between climate scientists, social scientists, policymakers, and other stakeholders 

seeking to collaboratively target and prioritize adaptation efforts. 

The specific social vulnerability indicators used in this study of Brazil are demographic density 

(inhabitants/km2) and the inverse of the HDI for all Brazilian municipalities in the year 2000. This 

selection of indicators is based on the assumption that social vulnerability to climate change is likely to 

be higher in regions with higher demographic density and lower HDI scores. Indicator selection criteria 

include data availability, spatial coverage of data, and comparability of data sets. 

Using ArcGIS®, the authors applied the following steps to normalize these two input variables to a 1° 

resolution grid. The initial demographic density gridded (raster) data set resolution was five arc-minutes. 

The municipal-level HDI data were transformed from a vector data set (polygons) into a five arc-minute 

raster layer. Next, both five arc-minute raster layers were converted into 1° resolution raster layers 
using mean neighborhood block statistics. 

Mapping of the RCCI and SCVI analyses revealed distinct spatial patterns (Figure 5). Torres et al. (2012: 

604) explain that “low RCCI values should not be interpreted as indicating ‘no change’ or ‘no impact,’ 

but rather as a smaller change relative to other regions.” The SCVI analysis revealed major socio-

climatic hotspots in Brazil’s semi-arid Northeast region, which is characterized by low-to-medium RCCI 

values, relatively high demographic density, and the country’s lowest HDI levels. The SCVI results also 

revealed several punctual socio-climatic hotspots in several of Brazil’s major metropolitan regions — 

areas expected to be impacted by climate-related events such as floods, landslides, and heat waves — 

including Manaus, Belo Horizonte, Brasília, Salvador, Rio de Janeiro, São Paulo, and most of the 

northeastern state capital cities. Manaus, Belo Horizonte, and Brasília were found to have high or very 

high RCCI values. 
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FIGURE 5. MAP DISPLAYING (A) THE RCCI AND (B) THE SCVI FOR BRAZIL 

 
Source: Reproduced from Torres, Lapola, Marengo, and Lombardo, 2012, with kind permission from 
Springer Science + Business Media. 

Torres et al. (2012) present a transparent methodology but do not address weighting, uncertainty 

analysis, or sensitivity analysis. The SCVI provides a flexible design. Both of its major components can be 

modified and updated as new data sets become available. Other climate change indices can be used 

instead of or in addition to the RCCI, and users can explore alternatives to HDI data sets for integration 

in the social vulnerability component. Wider application and refinements are needed to improve the 

SCVI methodology. Torres et al. (2012) recommend refinements of SCVI index calculation in future 

studies by using higher-resolution regional climate models and more advanced statistical downscaling 

techniques to calculate the RCCI, and by experimenting with other social vulnerability indicators to 

capture direct and indirect climate change impacts (e.g., high resolution data on climate-driven 
agricultural losses, epidemiological impacts, and susceptibility to a variety of hazards and risks). 

Contact for further information: Roger Rodrigues Torres, Ph.D. Candidate, Center for Weather 

Forecast and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, 

Brazil; E-mail: roger.torres@cptec.inpe.br, personal webpage: http://rtorres.webnode.com.br/. 

A.5  WATER POVERTY INDEX 

The Water Poverty Index (WPI) is designed to assess water stress and water scarcity. It is built on the 

premise that access to adequate and sustained supplies of safe water along with adequate levels of 

sanitation are essential for social and economic development and for the reduction of poverty, hunger, 

and disease (Sullivan, 2002; Molle and Mollinga, 2003; Sullivan et al., 2003; Giné Garriga and Pérez 

Foguet, 2011). The conceptualization of poverty in the WPI is derived from the basic needs approach as 

developed by Amartya Sen and others. Access to sufficient quantities of safe water is necessary for an 

individual, a household, or a community to be effective and productive. Failure to meet this basic 

condition has negative repercussions for human health given that food production, personal and food 

hygiene, pathogen exposure, and time available for activities other than collecting water are affected by 

water availability, quality, and access. Furthermore, inadequate water supply is likely to have negative 

impacts on the condition of the local environment, with additional harmful consequences for the 
inhabiting human population. 
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Although the WPI did not initially focus on climate change, it provided a basis for the development of 

both the CVI and the Water Vulnerability Index (WVI) (Sullivan, 2011; Balica, 2012b). The Resources 

component of the WPI, which includes measures of water quantity and water availability, reflects 
hydrometeorological factors. 

The WPI is intended to serve as a holistic monitoring, policy, and management tool in support of 

collaboration among stakeholders seeking to address the complexities of water resource issues toward 

equitable water provision and allocation. The index links human wellbeing and poverty to critical water-

related variables within physical, social, economic, and environmental dimensions. Similar to the LVI, the 

WPI applies an interdisciplinary approach and adopts concepts from the Sustainable Livelihoods 

Framework (Carney, 1998; Scoones, 1998; Sullivan et al., 2003), which assesses development outcomes 

in terms of the distribution of livelihood assets (i.e., natural, physical, financial, social, and human capital). 

If developed using a participatory, inclusive, and transparent approach, the WPI can help stakeholders 

build consensus and prioritize action (e.g., decide how to target assistance for water provision to 

specific areas or populations). 

The WPI methodology takes into account spatial and temporal variability within a country or region, and 

it can be applied at a range of spatial scales from local (e.g., district) to intermediate (e.g., river basin) to 

broad scale (e.g., national-level comparisons) using a variety of data sources (Sullivan et al., 2003, 2006; 

Sullivan and Meigh, 2007; Balica, 2012b). A rich supply of literature published from 2002 to 2011 

documents methodological challenges and improvements. At local scales, the WPI has been applied as 

follows: Sullivan et al. (2003) at the community scale in South Africa, Tanzania, and Sri Lanka; Fenwick 

(2010) at the community scale in Mexico; Giné Garriga and Pérez Foguet (2010, 2011) at the district 

scale in Kenya; and Heidecke (2006) at the commune scale in Benin. Lawrence et al. (2002) and Cho et 

al. (2010) applied the WPI at the national scale to draw international comparisons. Analysts have 

georeferenced variables to link macro-level hydrological data on water availability and micro-level data 

such as household-, community-, and district-level information on water stress, time spent collecting 

water, and the ability to use water for productive purposes. Studies applying the WPI should be updated 

at regular intervals (e.g., every three to five years) to monitor progress. International coordination of 

locally generated data and data management would help to advance multiscalar analysis. 

The WPI is calculated on a scale from 0 (the highest level of water poverty) to 100 (the lowest level of 

water poverty). Each component is standardized to fall within this range. Equal weights or differential 

weights can be applied to both the components and the subcomponents. Equal weights initially should be 

applied to calculate a baseline value. Giné Garriga and Pérez Foguet (2010) compare different 

aggregation methods.  

Sullivan et al. (2003) used the following five WPI components and their subcomponents for pilot sites in 
South Africa, Tanzania, and Sri Lanka (Figure 6, following page): 

1) Resources (assessment of surface water and groundwater availability using hydrological and 

hydrogeological techniques, quantitative and qualitative evaluation of the variability or reliability of 

resources, quantitative and qualitative assessment of water quality); 

2) Access (access to clean water as a percentage of households having a piped water supply; reports 

of conflict over water use; access to sanitation as a percentage of population; percent of water 

carried by women; time spent in water collection, including waiting; access to irrigation coverage 
adjusted by climate characteristics); 

3) Capacity (wealth proxied by ownership of durable items, under-five mortality rate, education level, 

membership of water users associations, percent of households reporting illness due to water 
supplies, percent of households receiving a pension/remittance or wage); 
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4) Use (domestic water consumption rate; agricultural water use, expressed as the proportion of 

irrigated land to total cultivated land; livestock water use, based on livestock holdings and standard 

water needs; industrial water use [purposes other than domestic and agricultural]); and 

5) Environment (people’s use of natural resources, reports of crop loss during the past five years, 
percent of households reporting erosion on their land). 

FIGURE 6. SPIDER DIAGRAM OF THE FIVE WPI COMPONENTS FOR PILOT STUDY 

SITES IN SOUTH AFRICA, TANZANIA, AND SRI LANKA 

 
Source: Reproduced from Sullivan et al., 2003, with kind permission from John Wiley and Sons. 

An advantage of the WPI is that it can be easily adapted to local needs and local data availability. It can 

be calculated even if some of the data are unavailable, although this step may weaken comparability 

between study sites. Cho et al. (2010) proposed two simplified water poverty indices as more cost-

effective and viable alternative approaches; they test an unequally weighted, three-component index 

integrating access, capacity, and environment and an equally weighted two-component version 

combining capacity and environment. 

PCA has been used by WPI developers to reduce the number of input indicators (e.g., Cho et al., 2010; 

Giné Garriga and Pérez Foguet, 2010). Giné Garriga and Pérez Foguet (2010) apply sensitivity analysis to 

test the robustness of the WPI and improve its transparency. WPI results have been mapped (Cullis and 

O’Regan, 2004; Heidecke, 2006; Sullivan et al., 2006; Giné Garriga and Pérez Foguet, 2010, 2011; Pérez 

Foguet and Giné Garriga, 2011), displayed in bar graphs (Lawrence et al., 2002; Sullivan et al., 2003), and 

displayed in spider diagrams (Sullivan et al., 2003; Cullis and O’Regan, 2004; Heidecke 2006; Sullivan et 
al., 2006; Sullivan and Meigh, 2007). 

Contact for further information: Dr. Caroline A. Sullivan, Associate Professor, School of Environmental 

Science and Management, Southern Cross University, Australia; E-mail: caroline.sullivan@scu.edu.au. 
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A.6 WATER VULNERABILITY INDEX 

The Water Vulnerability Index (WVI) assesses current and future water sector vulnerability to climate 

change. It has been developed as an integrative multidimensional tool for use by basin- and local-level 

water managers and decision makers to support water governance and local efforts toward integrated 

water resources management (Sullivan, 2011). The WVI is intended to help guide the development of 

climate adaptation strategies and to prioritize investments by enabling comparison of water vulnerability 

profiles and identification of site-specific drivers of vulnerability at the municipal scale. While the WVI 

methodology can be adapted for use at multiple spatial scales, to date it has been used at the municipal 
scale to understand how water vulnerability varies across municipalities within a river basin. 

The WVI structural design consists of two major components: (1) supply-driven vulnerability of water 

systems; and (2) demand-driven vulnerability of water users (Sullivan, 2011). Each of the two major 

components integrates four subcomponents and eight individual indicators. This structure allows the 

user to consider adaptation options based not only on the information that the overall comparative WVI 

scores provide, but also on the more detailed information that the subcomponent and individual 

indicator values provide. To assess expected or possible future water vulnerability for comparison with 

scores for current conditions, input values can be adjusted, for example, by increasing current values of 

the demand-driven indicators and/or decreasing current values of the supply-driven indicators according 
to projections or future scenarios. 

Relying on existing data, Sullivan (2011) applied the WVI to compare supply- and demand-driven water 

vulnerability across 87 South African municipalities within the Orange River Basin (Figures 7 and 8). The 

WVI is calculated on a scale from 0 (the least vulnerable) to 100 (the most vulnerable). In this pilot 

study, supply-driven water system vulnerability was calculated using the following four subcomponents 

and eight individual indicators: 

 Resource vulnerability (mean annual run-off including upstream contributions; annual groundwater 
exploitation potential); 

 Extreme event vulnerability (number of days per annum where rainfall = 0 mm; days per annum with 
rainfall >25 mm); 

 Land cover vulnerability (percentage cover of urbanization upstream; percentage cover of irrigated 
land); and 

 Storage vulnerability (dam coverage; coefficient of variation of mean annual precipitation).  

Demand-driven water user vulnerability was calculated using the following four subcomponents and 

eight individual indicators: 

 Demographic vulnerability (total population; population density); 

 Household vulnerability (percentage of economically vulnerable households; percentage of 
households using water from direct resource); 

 Economic vulnerability (percentage of employment in water-dependent sectors, e.g., agriculture, 
manufacturing, and mining; percentage gross value added in water-dependent sectors); and 

 Bulk demand vulnerability (total annual water demand; evaporative demand). 

Identification and selection of appropriate indicators began with consultation of previous qualitative 

research by Romero (2007) on local perceptions of vulnerability of water supplies and water users in 

the study region. Interviews and workshops were then held to gather additional qualitative information 

from the perspective of local people. These sources of qualitative data were analyzed and interpreted to 
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evaluate the relative importance of different aspects of vulnerability and, thus, to explore possible 

differential weighting schemes for calculating index scores. Data availability concerns and expert opinion 

shaped the final selection of indicators and organization into subcomponents. According to Sullivan 

(2011: 630), data for South Africa is well-organized, available from a variety of sources, and relatively 

uniform in quality. Coverage of the entire Orange River Basin was limited by insufficient data availability 

and the lack of data consistency from Lesotho, Botswana, and Namibia. Data sources included databases 

of the national statistical agency, Statistics South Africa (www.statssa.gov.za). Other relevant sources 

including South Africa’s Department of Water and Forestry provided national hydrologic and 

meteorologic data. The qualitative information was used to evaluate the relative importance of different 

vulnerability indicators and to consider possible unequal weighting schemes. 

Sullivan (2011) does not include uncertainty or sensitivity analysis but recognizes that there is 

uncertainty associated with the values generated by the WVI approach. Sullivan (2011) also 

acknowledges that more work is needed on order to refine the WVI methodology and recommends 

including more information on water quality as a way to improve the validity of the WVI. 
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FIGURE 7. (A) WVI SCORES FOR 87 MUNICIPALITIES IN SOUTH AFRICA  

AND (B) WVI SCORES AT THE MUNICIPAL SCALE MAPPED ACROSS  

THE ORANGE RIVER BASIN 

(a) 

 
(b) 

 
 

(continued on following page) 
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 Source: Reproduced from Sullivan, 2011, with kind permission from Springer Science + Business Media. 
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FIGURE 8. (A) WVI COMBINED SUPPLY AND DEMAND DRIVER VALUES FOR 87 

MUNICIPALITIES IN SOUTH AFRICA AND (B) CURRENT CONDITIONS OF WATER 

VULNERABILITY IN TWO MUNICIPALITIES IN SOUTH AFRICA  

(WESTONARIA AND SEME) 

(a) 

 
(b) 

 
           Source: Reproduced from Sullivan, 2011, with kind permission from Springer Science + Business Media. 
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Contact for further information: Dr. Caroline A. Sullivan, Associate Professor, School of Environmental 
Science and Management, Southern Cross University, Australia; E-mail: caroline.sullivan@scu.edu.au. 
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